Splice variants play an important role within the cell in both increasing the proteome diversity and in cellular function. Splice variants are also associated with disease states and may play a role in their etiology. Information about splice variants has, until now, mostly been derived from the primary transcript or through cellular studies. In this study information from the transcript and other studies is combined with tertiary structure information derived from homology models. Through this method we have determined that it is possible to effectively model splice variants. Forty models of splice variants for fourteen proteins were produced. Analysis of the models shows that deletions produce superior model validation values. Additions to sequences where there is little homology become increasingly difficult to model with increasing sequence length. Many of the splicing events are associated with post-translational modification either in the N-terminal region by changing the signal peptide or by affecting the number or availability of glycosylation sites. Often the alternative exon combinations are associated with loss or gain of whole structural units, as opposed to just changing small loop regions. Losing part of the secondary structure may destabilize neighboring parts of the same secondary structure. Detailed analysis is given of four biomedically relevant proteins (Beta-site Amyloid Precursor Protein Cleaving enzyme (BACE), Interleukin-4, Frataxin and Hereditary hemochromatosis protein) and their associated splice variant models. The visualization of these possible structures provides new insights about their functionality and the possible etiology of associated diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.10568 | DOI Listing |
Signal Transduct Target Ther
January 2025
MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
Emerging evidence demonstrates that cryptic translation from RNAs previously annotated as noncoding might generate microproteins with oncogenic functions. However, the importance and underlying mechanisms of these microproteins in alternative splicing-driven tumor progression have rarely been studied. Here, we show that the novel protein TPM3P9, encoded by the lncRNA tropomyosin 3 pseudogene 9, exhibits oncogenic activity in clear cell renal cell carcinoma (ccRCC) by enhancing oncogenic RNA splicing.
View Article and Find Full Text PDFCancer Genet
January 2025
Cincinnati Children's Hospital Medical Center, Division of Oncology, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA. Electronic address:
Introduction: POT1 tumor predisposition (POT1-TPD) is an autosomal dominant disorder characterized by increased lifetime malignancy risk. Melanoma, angiosarcoma, and chronic lymphocytic leukemia are the most frequently reported malignancies [1]. Protection of telomeres protein 1 (POT1) is part of the shelterin protein complex to maintain/protect telomeres [2].
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, Szeged, 6720, Hungary.
In our research, we performed temporal transcriptomic profiling of host cells infected with Equid alphaherpesvirus 1 (EHV-1) by utilizing direct cDNA sequencing based on nanopore MinION technology. The sequencing reads were harnessed for transcript quantification at various time points. Viral infection-induced differential gene expression was identified through the edgeR package.
View Article and Find Full Text PDFViruses
January 2025
Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.
Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
: The nuclear factor (NF)-kB essential modulator (NEMO) has a crucial role in the NFκB pathway. Hypomorphic pathogenic variants cause ectodermal dysplasia with immunodeficiency (EDA-ID) in affected males. However, heterozygous amorphic variants could be responsible for Incontinentia Pigmenti (IP) in female carriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!