Sequencing of the genomes of Mycobacterium tuberculosis and Mycobacterium bovis provides a unique opportunity to study the biology of these pathogens on the genomic level. The computational detection of anomalous gene clusters such as those encompassed by pathogenicity islands allows for a narrowing of the study into well-defined groups of genes. Pathogenicity islands of M. tuberculosis (strains H37Rv and CDC1551) as well as M. bovis genomes comprise a group of genes encoding proteins that have been shown to be of immunological importance. The cross-genomic comparison (M. tuberculosis vs M. bovis) resulted in the elucidation of unique proteins in M. tuberculosis. These proteins may play a significant role in the host recognition process.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.10586DOI Listing

Publication Analysis

Top Keywords

pathogenicity islands
12
mycobacterium tuberculosis
8
tuberculosis mycobacterium
8
mycobacterium bovis
8
tuberculosis
5
analysis products
4
products genes
4
genes encompassed
4
encompassed theoretically
4
theoretically predicted
4

Similar Publications

Bats are reservoir hosts for numerous well-known zoonotic viruses, but their broader virus-hosting capacities remain understudied. are an order of enteric viruses known to cause disease across a wide range of mammalian hosts, including Hepatitis A in humans and foot-and-mouth disease in ungulates. Host-switching and recombination drive the diversification of worldwide.

View Article and Find Full Text PDF

Background: Gene methylation in cells is an important factor in tumorigenesis, and radiotherapy can change DNA methylation in cells. In this study, complete genome methylation sequencing (BS-Seq) technology was used to analyze the genome-wide methylation of patients with cervical cancer before and after radiotherapy.

Methods: Three pairs of cervical squamous cell carcinoma samples were collected from patients before and after radiotherapy in July 2020.

View Article and Find Full Text PDF

Genomic characteristics and virulence of common but overlooked Yersinia intermedia, Y. frederiksenii, and Y. kristensenii in food.

Int J Food Microbiol

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

Article Synopsis
  • Three species of Yersinia (Y. intermedia, Y. frederiksenii, and Y. kristensenii), common foodborne pathogens, were analyzed using genomic data to uncover their potential threat, revealing significant genomic diversity and a noteworthy presence in Europe and Asia.
  • Y. intermedia demonstrated a high level of accessory genes, suggesting adaptability and the ability to acquire beneficial traits, while all three species contained various mobile genetic elements including plasmids and insertion sequences.
  • Differences in antibiotic resistance genes and virulence gene composition were noted, with Y. kristensenii being the most virulent, containing the most virulence genes, while Y. frederiksenii showed unique pathogenic mechanisms.
View Article and Find Full Text PDF

Profiling Genome-Wide Methylation Patterns in Cattle Infected with .

Int J Mol Sci

December 2024

Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA.

DNA methylation (DNAm) regulates gene expression and genomic imprinting. This study aimed to investigate the effect of gastrointestinal (GI) nematode infection on host DNAm. Helminth-free Holstein steers were either infected with (the brown stomach worm) or given tap water only as a control.

View Article and Find Full Text PDF

Genomic-Inbreeding Landscape and Selection Signatures in the Polo Argentino Horse Breed.

Int J Mol Sci

December 2024

Departamento de Genética, Universidad de Córdoba, CN IV KM 396 Edificio Gregor Mendel, 14007 Córdoba, Spain.

Analyzing genetic variability and inbreeding trends is essential for effective breed management in animal populations. To this, the characterization of runs of homozygosity (ROH) provides a good genomic approach to study the phenomena. The Polo Argentino (PA) breed, globally recognized as the best adapted to playing polo, is known for its strong influence of Thoroughbreds, intense selective breeding, and extensive use of reproductive biotechnologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!