Is there a weak H-bond --> LBHB transition on tetrahedral complex formation in serine proteases?

Proteins

The Julius Spokojny Bioorganic Chemistry Laboratory, Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel.

Published: February 2004

The transformation of a weak hydrogen bond in the free enzyme into a low-barrier hydrogen bond (LBHB) in the tetrahedral intermediate has been suggested as an important factor facilitating catalysis in serine proteases. In this work, we examine the structure of the H-bond in the Asp102-His57 diad of serine proteases in the free enzyme and in a covalent tetrahedral complex (TC) with a trifluoromethylketone inhibitor. We apply ab initio quantum mechanical calculations to models consisting of a large molecular fragment of the enzyme active site, and the combined effect of the rest of the protein body and the solvation by surrounding bulk water was simulated by a self-consistent reaction field method in our novel QM/SCRF(VS) approach. Potential profiles of adiabatic proton transfer in the Asp102-His57 diad in these model systems were calculated. We conclude that the hydrogen bond in both the free enzyme and in the enzyme-inhibitor TC is a strong ionic asymmetric one-well hydrogen bond, in contrast to a previous suggestion that it is a weak H-bond in the former and a double-well LBHB in the latter.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.10610DOI Listing

Publication Analysis

Top Keywords

hydrogen bond
16
free enzyme
12
weak h-bond
8
tetrahedral complex
8
bond free
8
serine proteases
8
asp102-his57 diad
8
h-bond -->
4
--> lbhb
4
lbhb transition
4

Similar Publications

Structure-Function Analysis of CYP105A1 in the Metabolism of Nonsteroidal Anti-inflammatory Drugs.

Biochemistry

January 2025

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.

CYP105A1 exhibits monooxygenase activity to a wide variety of structurally different substrates with regio- and stereospecificity, making its application range broad. Our previous studies have shown that CYP105A1 wild type and its variants metabolize 12 types of nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the R84A variant exhibited a high activity against many NSAIDs.

View Article and Find Full Text PDF

The synthesis and characterization of benzo[d]thiazol-2-amine derivatives, which were prepared by reacting benzothiazole with para-aminobenzophenone in ethanol, supplemented with glacial acetic acid. Subsequently, compound (2) was synthesized from compound (1) using NaNO, HPO, and HNO in a water-based solvent, resulting in 2-hydroxy-1-naphthaldehyde. Another derivative, compound (3), was synthesized by reacting compound (1) with vanillin under similar conditions.

View Article and Find Full Text PDF

Organic hydrides can store hydrogen via chemical bonding under ambient conditions, enabling the safe storage and transportation of hydrogen gas using the same infrastructure for gasoline. However, in previous research, most organic hydrides have been produced from petroleum, and therefore replacing them with earth-abundant or renewable compounds is essential to ensure sustainability. This study demonstrates dihydrolevoglucosenone (CyreneTM), which is a biodegradable liquid ketone that is produced directly from biomass without pretreatments on an industrial scale, as a new renewable organic hydride.

View Article and Find Full Text PDF

How does dopamine convert into norepinephrine? Insights on the key step of the reaction.

J Mol Model

January 2025

Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.

Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.

View Article and Find Full Text PDF

Ice interfaces are pivotal in mediating key chemical and physical processes such as heterogeneous chemical reactions in the environment, ice nucleation, and cloud microphysics. At the ice surface, water molecules form a quasi-liquid layer (QLL) with properties distinct from those of the bulk. Despite numerous experimental and theoretical studies, a molecular-level understanding of the QLL has remained elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!