In the last few years, an increased attention has been focused on NAD(+)-dependent DNA ligases. This is mostly due to their potential use as antibiotic targets, because effective inhibition of these essential enzymes would result in the death of the bacterium. However, development of an efficient drug requires that the conformational modifications involved in the catalysis of NAD(+)-dependent DNA ligases are understood. From this perspective, we have investigated the conformational changes occurring in the thermophilic Thermus scotoductus NAD(+)-DNA ligase upon adenylation, as well as the effect of cofactor binding on protein resistance to thermal and chemical (guanidine hydrochloride) denaturation. Our results indicate that cofactor binding induces conformational rearrangement within the active site and promotes a compaction of the enzyme. These data support an induced "open-closure" process upon adenylation, leading to the formation of the catalytically active enzyme that is able to bind DNA. These conformational changes are likely to be associated with the protein function, preventing the formation of nonproductive complexes between deadenylated ligases and DNA. In addition, enzyme adenylation significantly increases resistance of the protein to thermal denaturation and GdmCl-induced unfolding, establishing a thermodynamic link between ligand binding and increased conformational stability. Finally, chemical unfolding of deadenylated and adenylated enzyme is accompanied by accumulation of at least two equilibrium intermediates, the molten globule and premolten globule states. Maximal populations of these intermediates are shifted toward higher GdmCl concentrations in the case of the adenylated ligase. These data provide further insights into the properties of partially folded intermediates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1303902PMC
http://dx.doi.org/10.1016/S0006-3495(04)74184-3DOI Listing

Publication Analysis

Top Keywords

nad+-dependent dna
12
thermus scotoductus
8
dna ligases
8
conformational changes
8
cofactor binding
8
dna
5
conformational
5
adenylation-dependent conformation
4
conformation unfolding
4
unfolding pathways
4

Similar Publications

Inhibition of SIRT4 promotes bladder cancer progression and immune escape via attenuating CD8 T cells function.

Int Immunopharmacol

January 2025

Department of Urology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China. Electronic address:

Background: Bladder cancer (BCa) is one of the most common malignancies of the urinary system and is characterized by a high recurrence rate and significant mortality. Sirtuin 4 (SIRT4), a member of the NAD-dependent deacetylase and ADP-ribosyltransferase family, is involved in regulating cellular metabolism, DNA repair, and longevity, potentially influencing tumor progression and immune escape. This study aimed to elucidate the role of SIRT4 in BCa.

View Article and Find Full Text PDF

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

Association between migraine and mitochondria: A Mendelian randomization study.

Mol Pain

December 2024

Central Laboratory of The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, China.

Background And Objective: Mitochondria are important organelles functioning in metabolic processes, inflammatory response and neurological disorders. Migraines are chronic and paroxysmal neurological disorders characterized by recurrent episodes of severe headache and other neurological symptoms. We explored whether mitochondria may be genetically and/or causally associated with migraine.

View Article and Find Full Text PDF

Calorie restriction (CR), as a dietary approach of reducing caloric intake while maintaining nutritional adequacy, has gained significant attention due to its potential role in promoting longevity and enhancing health. Central to the beneficial effects of CR is SIRT1. SIRT1 belongs to a family of NAD+ dependent deacetylases and plays an important role in regulating various cellular processes, including histone deacetylation, oxidative stress response, and mitochondrial biogenesis.

View Article and Find Full Text PDF

Mitochondrial DNA Damage and Its Repair Mechanisms in Aging Oocytes.

Int J Mol Sci

December 2024

Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara 634-0813, Japan.

The efficacy of assisted reproductive technologies (ARTs) in older women remains constrained, largely due to an incomplete understanding of the underlying pathophysiology. This review aims to consolidate the current knowledge on age-associated mitochondrial alterations and their implications for ovarian aging, with an emphasis on the causes of mitochondrial DNA (mtDNA) mutations, their repair mechanisms, and future therapeutic directions. Relevant articles published up to 30 September 2024 were identified through a systematic search of electronic databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!