ATP and ADP levels are critical regulators of glucose-stimulated insulin secretion. In many aerobic cell types, the phosphorylation potential (ATP/ADP/P(i)) is controlled by sensing mechanisms inherent in mitochondrial metabolism that feed back and induce compensatory changes in electron transport. To determine whether such regulation may contribute to stimulus-secretion coupling in islet cells, we used a recently developed flow culture system to continuously and noninvasively measure cytochrome c redox state and oxygen consumption as indexes of electron transport in perifused isolated rat islets. Increasing substrate availability by increasing glucose increased cytochrome c reduction and oxygen consumption, whereas increasing metabolic demand with glibenclamide increased oxygen consumption but not cytochrome c reduction. The data were analyzed using a kinetic model of the dual control of electron transport and oxygen consumption by substrate availability and energy demand, and ATP/ADP/P(i) was estimated as a function of time. ATP/ADP/P(i) increased in response to glucose and decreased in response to glibenclamide, consistent with what is known about the effects of these agents on energy state. Therefore, a simple model representing the hypothesized role of mitochondrial coupling in governing phosphorylation potential correctly predicted the directional changes in ATP/ADP/P(i). Thus, the data support the notion that mitochondrial-coupling mechanisms, by virtue of their role in establishing ATP and ADP levels, may play a role in mediating nutrient-stimulated insulin secretion. Our results also offer a new method for continuous noninvasive measures of islet cell phosphorylation potential, a critical metabolic variable that controls insulin secretion by ATP-sensitive K(+)-dependent and -independent mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/diabetes.53.2.401 | DOI Listing |
Front Antibiot
April 2024
The Science Academy, Istanbul, Türkiye.
The aim of this study was to reveal the microbial and kinetic impacts of acute and chronic exposure to one of the frequently administered antibiotics, i.e., sulfamethoxazole, on an activated sludge biomass.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
As an efficient, sustainable, and environmentally friendly semiconductor material, covalent organic frameworks (COFs) can generate hydrogen peroxide (HO) by photocatalysis, attracting wide attention in recent years. Herein, the effects of hydroxyl, methoxyl, and vinyl groups of imide-linked two-dimensional (2D) COFs on the photocatalytic production of HO were studied theoretically and experimentally. The introduction of vinyl groups greatly promotes the photogenerated charge separation and migration of COFs, providing more oxygen adsorption sites, stronger proton affinity, and lower intermediate binding energy, which effectively facilitates the rapid conversion of oxygen to HO.
View Article and Find Full Text PDFNature
January 2025
SUGAR, X-star, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
Foraminifera are ubiquitous marine protists that intracellularly accumulate phosphate, an important macronutrient in marine ecosystems and in fertilizer potentially leaked into the ocean. Intracellular phosphate concentrations can be 100-1,000 times higher than in the surrounding water. Here we show that phosphate storage in foraminifera is widespread, from tidal flats to the deep sea.
View Article and Find Full Text PDFTransplant Cell Ther
January 2025
Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH.
Background: HSCT conditioning regimens cause massive lysis of hematopoietic cells with release of toxic intracellular molecules into the circulation.
Objectives: To describe the response to oxidative stress early after hemopoietic stem cell transplantation (HSCT) and assess the association of early oxidative stress with later transplant outcomes.
Study Design: Key components of in the body's physiological response to oxidative stress were studied in a cohort of 122 consecutive pediatric allogeneic HSCT recipients.
J Appl Physiol (1985)
January 2025
Department of Human Physiology, Gonzaga University, Spokane, Washington, United States.
We tested the hypothesis that power at maximal metabolic steady state is similar between fitness matched men and women. Eighteen participants (9 men, 9 women) performed a cycling graded exercise test for maximal oxygen consumption (V̇O). Men and women were matched for V̇O normalized to fat free mass (FFM), which was 50.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!