Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tig.2003.12.001DOI Listing

Publication Analysis

Top Keywords

homeodomain hexapeptide
4
hexapeptide pbc-interaction-domain
4
pbc-interaction-domain distance
4
distance size
4
size matters
4
homeodomain
1
pbc-interaction-domain
1
distance
1
size
1
matters
1

Similar Publications

Homeodomain Involvement in Nuclear HOX Protein Homo- and Heterodimerization.

Int J Mol Sci

January 2025

Louvain Institute of Molecular Science and Technology, Université catholique de Louvain, 5 (L7.07.10) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.

genes play essential roles in patterning the anteroposterior axis of animal embryos and in the formation of various organs. In mammals, there are 39 genes organized into four clusters (HOXA-D) located on different chromosomes. In relationship with their orderly arrangement along the chromosomes, these genes show nested expression patterns which imply that embryonic territories co-express multiple genes along the main body axis.

View Article and Find Full Text PDF

The HOX and PBX genes encode transcription factors that have key roles in development and cancer, both independently and as a heterodimer within a complex of proteins that recognizes specific sequences in DNA and can both activate and repress transcription of target genes. Due to functional redundancy amongst HOX proteins, knock down or knock out studies of individual genes often do not result in an altered phenotype. An alternative approach is to target the interaction between HOX and PBX proteins, which is dependent on a conserved hexapeptide region within HOX.

View Article and Find Full Text PDF

HOXA9 transcription factor is expressed in hematopoietic stem cells and is involved in the regulation of their differentiation and maturation to various blood cells. HOXA9 is linked to various leukemia and is a marker for poor prognosis of acute myeloid leukemia (AML). This protein has a conserved DNA-binding homeodomain and a transactivation domain.

View Article and Find Full Text PDF

Role of a versatile peptide motif controlling Hox nuclear export and autophagy in the fat body.

J Cell Sci

September 2020

Institut de Génomique Fonctionnelle de Lyon, ENS-Lyon, 32/34 Av. Tony Garnier, 69007 Lyon, France

Hox proteins are major regulators of embryonic development, acting in the nucleus to regulate the expression of their numerous downstream target genes. By analyzing deletion forms of the Hox protein Ultrabithorax (Ubx), we identified the presence of an unconventional nuclear export signal (NES) that overlaps with a highly conserved motif originally described as mediating the interaction with the PBC proteins, a generic and crucial class of Hox transcriptional cofactors that act in development and cancer. We show that this unconventional NES is involved in the interaction with the major exportin protein CRM1 (also known as Embargoed in flies) and We find that this interaction is tightly regulated in the fat body to control the autophagy-repressive activity of Ubx during larval development.

View Article and Find Full Text PDF

The human HOXA9 protein uses paralog-specific residues of the homeodomain to interact with TALE-class cofactors.

Sci Rep

April 2019

Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, 46 allée d'Italie 69364, Lyon cedex, 07, France.

Article Synopsis
  • HOX proteins interact with TALE-class cofactors PBX and MEIS, which helps them regulate gene expression through unique binding motifs.
  • The interaction of HOX-PBX complexes usually requires a specific hexapeptide motif, but the presence of MEIS can change this requirement for many HOX proteins.
  • The study focused on the human HOXA9 protein's interactions with PBX1 and MEIS1, demonstrating that the binding depends on both a conserved HX motif and specific residues of HOXA9, highlighting the complexity of these protein interactions.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!