In CA1 neurons of guinea pig hippocampal slices, long-term depression (LTD) was induced in the field EPSP response in the absence of test synaptic inputs (one stimulus every 20 s) by application of the metabotropic glutamate receptor (mGluR) agonist, aminocyclopentane-1S, 3R-dicarboxylic acid (ACPD). This effect was blocked and long-term potentiation (LTP) was induced by co-application of N-methyl-D-aspartate (NMDA) during ACPD perfusion (ACPD/NMDA-induced LTD). These results indicate that the state of NMDA receptor activation during ACPD perfusion determines whether LTP or LTD is induced in hippocampal CA1 neurons. Co-application of an inositol 1, 4, 5-trisphosphate (IP3) receptor inhibitor, 2-aminotheoxydiphenyl borate, during ACPD application had no effect on the ACPD/NMDA-induced LTP, but increased the magnitude of the ACPD-induced LTD, suggesting that the ACPD/NMDA-induced LTP involves NMDA receptors, but not IP3 receptors, whereas the converse applies to the ACPD-induced LTD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2003.11.058DOI Listing

Publication Analysis

Top Keywords

ltp induced
12
ca1 neurons
12
hippocampal ca1
8
acpd perfusion
8
acpd/nmda-induced ltp
8
chemical ltp
4
induced
4
induced co-activation
4
co-activation metabotropic
4
metabotropic n-methyl-d-aspartate
4

Similar Publications

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories.

View Article and Find Full Text PDF

a member of the family, is known for its diverse biological activities, including anti-inflammatory properties. The mechanisms through which polysaccharide (LTP) induces autophagy, however, remain largely unexplored. This study aims to elucidate the role of LTP in autophagy induction and its efficacy in mitigating inflammation within macrophages.

View Article and Find Full Text PDF

Amblyopia, a highly prevalent loss of visual acuity, is classically thought to result from cortical plasticity. The dorsal lateral geniculate nucleus (dLGN) has long been held to act as a passive relay for visual information, but recent findings suggest a largely underestimated functional plasticity in the dLGN. However, the cellular mechanisms supporting this plasticity have not yet been explored.

View Article and Find Full Text PDF

The insular cortex (IC) processes various sensory information, including nociception, from the trigeminal region. Repetitive nociceptive inputs from the orofacial area induce plastic changes in the IC. Parvalbumin-immunopositive neurons (PVNs) project to excitatory neurons (pyramidal neurons [PNs]), whose inputs strongly suppress the activities of PNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!