We have recently proposed and demonstrated an approach that enables the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra within a single scan. A promising application opened up by this new accelerated form of data acquisition concerns the possibility of monitoring in real time the chemical nature of analytes subject to a continuous flow. The present paper illustrates such potential, with the real-time acquisition of a series of 2D 1H NMR spectra arising from a mixture of compounds subject to a continuous liquid chromatography (LC) separation. This real-time 2D NMR identification of chemicals eluted minutes apart under usual LC-NMR conditions differs from the way in which LC-2D NMR has hitherto been carried out, which relies on stopped-flow modes of operations whereby fractions are first collected and then subject to individual, aliquot-by-aliquot analyses. The real-time LC-2D NMR experiment hereby introduced can be implemented in a straightforward manner using modern commercial LC-NMR hardware, thus opening up immediate possibilities in high-throughput characterizations of complex molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja0389422 | DOI Listing |
Abdom Radiol (NY)
January 2025
University of Virginia, Charlottesville, USA.
Biliary-enteric anastomosis is a common surgical procedure for benign and malignant pathologies involving bile ducts, pancreas and duodenum, as well as during liver transplantation. Imaging is key in detecting potential complications. Ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and nuclear scintigraphy provide complementary information.
View Article and Find Full Text PDFJ Neurooncol
January 2025
Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
Background: Irinotecan demonstrates anti-tumor efficacy in preclinical glioma models but clinical results are modest due to drug delivery limitations. Convection enhanced delivery (CED) improves drug delivery by increasing intratumoral drug concentration. Real-time magnetic resonance imaging of infusate delivery during CED may optimize tumor coverage.
View Article and Find Full Text PDFJ Pharm Anal
November 2024
College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
The quality of Chinese materia medica (CMM) is a challenging and focused topic in the modernization of traditional Chinese medicine (TCM). A profound comprehension of the morphology, structure, active constituents, and dynamic changes during the whole process of CMM growth is essential, which needs highly precise contemporary techniques for in-depth elucidation. Magnetic resonance imaging (MRI) is a cutting-edge tool integrating the benefits of both nuclear magnetic resonance (NMR) spectroscopy and imaging technology.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Medicine, Faculty of Medicine and Health Sciences, and Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
In early-stage Alzheimer's disease (AD) amyloid-β (Aβ) deposition can induce neuronal hyperactivity, thereby potentially triggering activity-dependent neuronal secretion of phosphorylated tau (p-tau), ensuing tau aggregation and spread. Therefore, cortical excitability is a candidate biomarker for early AD detection. Moreover, lowering neuronal excitability could potentially complement strategies to reduce Aβ and tau buildup.
View Article and Find Full Text PDFACS Nano
January 2025
Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
Glioblastoma multiforme (GBM), particularly the deep-seated tumor where surgical removal is not feasible, poses great challenges for clinical treatments due to complicated biological barriers and the risk of damaging healthy brain tissue. Here, we hierarchically engineer a self-adaptive nanoplatform (SAN) that overcomes delivery barriers by dynamically adjusting its structure, surface charge, particle size, and targeting moieties to precisely distinguish between tumor and parenchyma cells. We further devise a AN-uided ntuitive and recision ntervention (SGIPi) strategy which obviates the need for sophisticated facilities, skilled operations, and real-time magnetic resonance imaging (MRI) guidance required by current MRI-guided laser or ultrasound interventions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!