Background: Caspases are key mediators in the regulation and execution of apoptosis, a crucial part of the morphogenetic process during limb development. Caspase-8 and -9 are upstream caspases. Caspase-8 mediates the extrinsic pathway of apoptosis triggered by signaling through TNF-R1 family receptors. Caspase-9 is activated during the intrinsic pathway downstream of mitochondria. Caspase-3 is an effector caspase that initiates degradation of the cell in the final stages of apoptosis. Vitamin A is a potent teratogen that causes limb reduction defects in embryos exposed during organogenesis. Previous in vitro studies have shown that exposure of the organogenesis-stage murine limb to vitamin A results in excessive levels of apoptosis. The goal of this work was to characterize the involvement of caspase-3, -8, and -9, as well as cytochrome-c release from the mitochondria, in the apoptotic cascade induced by vitamin A.
Methods: Limb buds from gestational day 12 CD-1 mice were cultured in a chemically defined medium in the absence or presence of vitamin A. Cultures were terminated after 6 days to examine the effect of the drug on gross morphology. Apoptosis was detected by TUNEL staining after culture for 24 hr. Caspase activation was determined by Western blotting and localized by immunohistochemistry of control and treated limbs. The release of cytochrome-c into the cytoplasm was assessed by Western blotting after cell-fractionation.
Results: Limbs cultured in the presence of vitamin A showed a dose-dependent growth reduction and dysmorphogenesis of the cartilaginous anlagen. Apoptosis was increased in the interdigital, anterior, and posterior marginal zones and in the apical ectodermal ridge. Western-blotting confirmed the presence of activated caspase-3 that increased with time in culture and vitamin A concentration. Cleaved caspase-3 immunoreactivity colocalized with TUNEL stained limb regions and increased dramatically with increasing drug concentrations. In contrast, procaspase-8 and -9 were not activated. Exposure to high concentrations of vitamin A did, however, increase cytoplasmic cytochrome-c, suggesting mitochondrial involvement.
Conclusions: Caspase-3 is a key effector caspase in the apoptotic pathway induced by Vitamin A. While caspases-8 and -9 are not responsible for the activation of caspase-3 in response to the drug, cytochrome-c release from mitochondria may play an upstream role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bdra.10090 | DOI Listing |
Medicine (Baltimore)
January 2025
Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.
Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Gastroenterology, Endocrinology, Infectious Diseases and Metabolism, University Hospital Marburg, 35043 Marburg, Germany.
Background: Most spheroid models use size measurements as a primary readout parameter; some models extend analysis to T cell infiltration or perform caspase activation assays. However, to our knowledge, T cell motility analysis is not regularly included as an endpoint in imaging studies on cancer spheroids.
Methods: Here, we intend to demonstrate that motility analysis of macrophages and T cells is a valuable functional endpoint for studies on molecular interventions in the tumor microenvironment.
Cell Rep
January 2025
Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany.
Granulocytes exert several effector mechanisms, including the release of DNA traps during ETosis. While bacteria-induced ETosis has been linked to the non-canonical inflammasome pathway, the role of the inflammasome activation during ETosis in response to extracellular pathogens has not been investigated. The current study demonstrates that microfilariae (MF) of the rodent filarial nematode Litomosoides sigmodontis induce eosinophil ETosis via the canonical inflammasome pathway.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan 48824, United States.
Group B (GBS) is a major cause of fetal and neonatal mortality worldwide. Many of the adverse effects of invasive GBS are associated with inflammation; therefore, understanding bacterial factors that promote inflammation is of critical importance. Membrane vesicles (MVs), which are produced by many bacteria, may modulate host inflammatory responses.
View Article and Find Full Text PDFMicroPubl Biol
December 2024
Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
Macrophages are present in various forms throughout metazoans and play conserved roles in phagocytosis, immunity, and tissue homeostasis. In s larval hematopoietic organ, the lymph gland, transient caspase-mediated activation of caspase-activated DNase triggers the DNA damage response (DDR), which is crucial for macrophage-type cell differentiation. Here, we report that other species having different-sized mature lymph glands show effector caspase activity and DDR similar to those in , indicating that the developmental mechanism regulating phagocytic macrophage differentiation is conserved in different species of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!