Mixtures of cholesterol with phosphatidylcholine species containing the polyunsaturated acyl chains arachidonoyl or docosahexaenoyl were studied by (13)C magic angle spinning (MAS) NMR using both cross-polarization and direct polarization, by (31)P NMR and by differential scanning calorimetry. Several unique features of these systems were observed. The separation of cholesterol in crystalline form occurred at much lower molar fractions than with other forms of phosphatidylcholine. The crystals that were formed were sensitive to the history of the sample. At cholesterol molar fractions below 0.5, they dissolved into the membrane by sequential heating and cooling scans. With higher molar fractions of cholesterol, larger amounts of anhydrous crystals were formed after the first heating. This was accompanied by the formation of non-lamellar phases. The cholesterol crystals that were formed generally were not observed by direct polarization (13)C MAS NMR, even with delay times of 100 s. This suggests that the cholesterol crystals are in a more rigid state in mixtures with these lipids. This is in contrast with the terminal methyl group of the acyl chains that is too mobile to allow cross-polarization using 1 ms contact times.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mrc.1335 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!