Objective: To evaluate the potential of postischemic intravenous infusion of the endogenous antioxidant glutathione (GSH) to protect the liver from reperfusion injury following prolonged warm ischemia.

Background Data: The release of reactive oxygen species (ROS) by activated Kupffer cells (KC) and leukocytes causes reperfusion injury of the liver after warm ischemia. Therefore, safe and cost-effective antioxidant strategies would appear a promising approach to prevent hepatic reperfusion injury during liver resection, but need to be developed.

Methods: Livers of male Lewis rats were subjected to 60, 90, or 120 minutes of normothermic ischemia. During a 120 minutes reperfusion period either GSH (50, 100 or 200 micromol/h/kg; n= 6-8) or saline (n= 8) was continuously administered via the jugular vein.

Results: Postischemic GSH treatment significantly prevented necrotic injury to hepatocytes as indicated by a 50-60% reduction of serum ALT and AST. After 1 hour of ischemia and 2 hours of reperfusion apoptotic hepatocytes were rare (0.50 +/- 0.10%; mean +/- SD) and not different in GSH-treated animals (0.65 +/- 0.20%). GSH (200 micromol GSH/h/kg) improved survival following 2 hours of ischemia (6 of 9 versus 3 of 9 rats; P < 0.05). Intravital fluorescence microscopy revealed a nearly complete restoration of sinusoidal blood flow. This was paralleled by a reduction of leukocyte adherence to sinusoids and postsinusoidal venules. Intravenous GSH administration resulted in a 10- to 40-fold increase of plasma GSH levels, whereas intracellular GSH contents were unaffected. Plasma concentrations of oxidized glutathione (GSSG) increased up to 5-fold in GSH-treated animals suggesting counteraction of the vascular oxidant stress produced by activated KC.

Conclusions: Intravenous GSH administration during reperfusion of ischemic livers prevents reperfusion injury in rats. Because GSH is well tolerable also in man, this novel approach could be introduced to human liver surgery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1356215PMC
http://dx.doi.org/10.1097/01.sla.0000110321.64275.95DOI Listing

Publication Analysis

Top Keywords

reperfusion injury
20
gsh
9
reperfusion
8
liver reperfusion
8
injury prolonged
8
prolonged warm
8
warm ischemia
8
injury liver
8
120 minutes
8
gsh-treated animals
8

Similar Publications

Protective mechanism of safflower yellow injection on myocardial ischemia-reperfusion injury in rats by activating NLRP3 inflammasome.

BMC Complement Med Ther

January 2025

Institute of Basic Medical Sciences of Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China.

Objectives: This study intended to explore whether the protective effect safflower yellow injection (SYI) on myocardial ischemia-reperfusion (I/R) injury in rats mediated of the NLRP3 inflammasome signaling.

Methods: The I/R model was prepared by ligating the left anterior descending coronary artery for 45 min and then releasing the blood flow for 150 min. 96 male Wistar rats were randomly divided into sham group, I/R group, Hebeishuang group (HBS), SYI high-dose group (I/R + SYI-H), SYI medium-dose group (I/R + SYI-M) and SYI low-dose group (I/R + SYI-L).

View Article and Find Full Text PDF

Formation of I+III supercomplex rescues respiratory chain defects.

Cell Metab

January 2025

Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore. Electronic address:

Mitochondrial electron transport chain (ETC) complexes partition between free complexes and quaternary assemblies known as supercomplexes (SCs). However, the physiological requirement for SCs and the mechanisms regulating their formation remain controversial. Here, we show that genetic perturbations in mammalian ETC complex III (CIII) biogenesis stimulate the formation of a specialized extra-large SC (SC-XL) with a structure of I+III, resolved at 3.

View Article and Find Full Text PDF

UW supplementation with AP39 improves liver viability following static cold storage.

Sci Rep

January 2025

Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Static cold storage of donor livers at 4 °C incompletely arrests metabolism, ultimately leading to decreases in ATP levels, oxidative stress, cell death, and organ failure. Hydrogen Sulfide (HS) is an endogenously produced gas, previously demonstrated to reduce oxidative stress, reduce ATP depletion, and protect from ischemia and reperfusion injury. HS is difficult to administer due to its rapid release curve, resulting in cellular death at high concentrations.

View Article and Find Full Text PDF

Electroacupuncture combined with trigonelline inhibits pyroptosis in cerebral ischemia-reperfusion by suppressing autophagy via the PI3K/AKT/mTOR signaling pathway.

Brain Res Bull

January 2025

Department of Joint, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi East Road, Xi'an City, Shaanxi Province, 710054, PR China. Electronic address:

Background: Electroacupuncture (EA) and trigonelline (TG) have been reported to be beneficial in alleviating cerebral ischemia/reperfusion injury (CIRI). However, the synergistic effects of EA and TG in CIRI and the underlying mechanism have not been demonstrated.

Methods: Rats were subjected to middle cerebral artery occlusion (MCAO) surgery and reperfusion (MCAO/R) to establish a CIRI model.

View Article and Find Full Text PDF

Background: Pulmonary ischemia-reperfusion injury (PIRI) is a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in acute lung injury (ALI), their effects on PIRI remain undefined. The present study aims to explore the underlying mechanism of small nucleolar RNA host gene 16 (SNHG16) in PIRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!