Soluble inorganic pyrophosphatases (PPases) form two nonhomologous families, denoted I and II, that have similar active-site structures but different catalytic activities and metal cofactor specificities. Family II PPases, which are often found in pathogenic bacteria, are more active than family I PPases, and their best cofactor is Mn(2+) rather than Mg(2+), the preferred cofactor of family I PPases. Here, we present results of a detailed kinetic analysis of a family II PPase from Streptococcus gordonii (sgPPase), which was undertaken to elucidate the factors underlying the different properties of family I and II PPases. We measured rates of PP(i) hydrolysis, PP(i) synthesis, and P(i)/water oxygen exchange catalyzed by sgPPase with Mn(2+), Mg(2+), or Co(2+) in the high-affinity metal-binding site and Mg(2+) in the other sites, as well as the binding affinities for several active-site ligands (metal cofactors, fluoride, and P(i)). On the basis of these data, we deduced a minimal four-step kinetic scheme and evaluated microscopic rate constants for all eight relevant reaction steps. Comparison of these results with those obtained previously for the well-known family I PPase from Saccharomyces cerevisiae (Y-PPase) led to the following conclusions: (a) catalysis by sgPPase does not involve the enzyme-PP(i) complex isomerization known to occur in family I PPases; (b) the values of k(cat) for the magnesium forms of sgPPase and Y-PPase are similar because of similar rates of bound PP(i) hydrolysis and product release; (c) the marked acceleration of sgPPase catalysis in the presence of Mn(2+) and Co(2+) results from a combined effect of these ions on bound PP(i) hydrolysis and P(i) release; (d) sgPPase exhibits lower affinity for both PP(i) and P(i); and (e) sgPPase and Y-PPase exhibit similar values of k(cat)/K(m), which characterizes the PPase efficiency in vivo (i.e., at nonsaturating PP(i) concentrations).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi0357513 | DOI Listing |
Plant Cell Rep
December 2024
Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510000, Guangdong, China.
A total of 24 genes of vacuolar H-translocating pyrophosphatases H-PPases (VPP) genes were identified in Saccharum spontaneum AP85-441 and the ScVPP1-overexpressed Arabidopsis plants conferred salt tolerance. The vital role of vacuolar H-translocating pyrophosphatases H-PPases (VPP) genes involved in plants in response to abiotic stresses. However, the understanding of VPP functions in sugarcane remained unclear.
View Article and Find Full Text PDFPLoS One
August 2024
College of Agriculture, Anhui Science and Technology University, Fengyang, Anhui, China.
Plants have developed precise defense mechanisms against cadmium (Cd) stress, with vacuolar compartmentalization of Cd2+ being a crucial process in Cd detoxification. The transport of Cd into vacuoles by these cation / H+ antiporters is powered by the pH gradient created by proton pumps. In this study, the full-length cDNA of a vacuolar H+-pyrophosphatase (V-PPase) gene from Boehmeria nivea (ramie), BnVP1, was isolated using the rapid amplification of cDNA ends (RACE) method.
View Article and Find Full Text PDFPLoS One
July 2024
Liaocheng Academy of Agricultural Sciences, Liaocheng, Shandong, China.
Trehalose-6-phosphate phosphatase (TPP), a key enzyme for trehalose biosynthesis in plants, plays a pivotal role in the growth and development of higher plants, as well as their adaptations to various abiotic stresses. Employing bioinformatics techniques, 45 TPP genes distributed across 17 chromosomes were identified with conserved Trehalose-PPase domains in the peanut genome, aiming to screen those involved in salt tolerance. Collinearity analysis showed that 22 TPP genes from peanut formed homologous gene pairs with 9 TPP genes from Arabidopsis and 31 TPP genes from soybean, respectively.
View Article and Find Full Text PDFInt J Mol Sci
September 2023
Department of Biochemistry and Cell Physiology, Voronezh State University, Universitetskaya pl., 1, 394018 Voronezh, Russia.
Two metagenome-assembled genomes (MAGs), GKL-01 and GKL-02, related to the family have been assembled from the metagenome of bacterial mat obtained from a sulfide-rich thermal spring in the North Caucasus. Based on average amino acid identity (AAI) values and genome-based phylogeny, MAG GKL-01 represented a new genus within the family. The GC content of the GKL-01 DNA (44%) differed significantly from that of other known members of the genus (50.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
October 2023
Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!