A significant fraction of the variability found in the human transcriptome is due to alternative splicing, including alternative exon usage (AEU), intron retention and use of cryptic splice sites. We present a comparison of a large-scale analysis of AEU in the human transcriptome through genome mapping of Open Reading Frame ESTs (ORESTES) and conventional ESTs. It is shown here that ORESTES probe low abundant messages more efficiently. In addition, most of the variants detected by ORESTES affect the structure of the corresponding proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.crvi.2003.09.027DOI Listing

Publication Analysis

Top Keywords

exon usage
8
human transcriptome
8
ests orestes
8
orestes
4
orestes enriched
4
enriched rare
4
rare exon
4
usage variants
4
variants encoded
4
encoded proteins
4

Similar Publications

Exons within transcripts are traditionally classified as first, internal or last exons, each governed by different regulatory mechanisms. We recently described the widespread usage of 'hybrid' exons that serve as terminal or internal exons in different transcripts. Here, we employ an interpretable deep learning pipeline to dissect the sequence features governing the co-regulation of transcription initiation and splicing in hybrid exons.

View Article and Find Full Text PDF

Mitf over-expression leads to microphthalmia and coloboma in Mitf-cre mice.

Exp Eye Res

December 2024

Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada. Electronic address:

The Mitf transcription factor is a critical regulator of the melanocyte lineage and eye development. Mitf activity in different cell types is controlled in part by ten alternative promoters and their resulting isoforms. A useful tool for melanocyte-based research, Mitf-cre was designed to express Cre from the Mitf-M promoter, which is melanocyte specific.

View Article and Find Full Text PDF
Article Synopsis
  • Pre-mRNA splicing involves two key steps: 5' splice site cleavage and the ligation of exons, influenced by specific proteins called first and second step factors.
  • Researchers identified Fyv6 (FAM192A in humans) as a second step factor affecting splicing, and their RNA sequencing analysis revealed that its loss activates non-consensus splice sites across the transcriptome.
  • High-resolution cryo-electron microscopy showed that Fyv6 interacts uniquely with the Prp22 ATPase and its binding excludes another factor (Yju2), leading to a proposed model where Fyv6 enhances the use of traditional splice sites and aids in exon ligation.
View Article and Find Full Text PDF

EHMT2 as a Candidate Gene for an Autosomal Recessive Neurodevelopmental Syndrome.

Mol Neurobiol

December 2024

Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.

Neurodevelopmental disorders (NDD) comprise clinical conditions with high genetic heterogeneity and a notable enrichment of genes involved in regulating chromatin structure and function. The EHMT1/2 epigenetic complex plays a crucial role in repression of gene transcription in a highly tissue- and temporal-specific manner. Mutations resulting in heterozygous loss-of-function (LoF) of EHMT1 are implicated in Kleefstra syndrome 1 (KS1).

View Article and Find Full Text PDF

A comprehensive review of peroxiredoxin 4, a redox protein evolved in oxidative protein folding coupled with hydrogen peroxide detoxification.

Free Radic Biol Med

December 2024

Departments of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa, 920-0293, Japan.

Peroxiredoxin (PRDX) primarily employs electrons from thioredoxin in order to reduce peroxides. PRDX4 mainly resides either in the endoplasmic reticulum (ER) lumen or in extracellular spaces. Due to the usage of alternative promoters, a first exon is transcribed from different regions of the Prdx4 gene, which results in two types of mRNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!