The FtsZ protein is a polymer-forming GTPase which drives bacterial cell division and is structurally and functionally related to eukaryotic tubulins. We have searched for FtsZ-related sequences in all freely accessible databases, then used strict criteria based on the tertiary structure of FtsZ and its well-characterized in vitro and in vivo properties to determine which sequences represent genuine homologues of FtsZ. We have identified 225 full-length FtsZ homologues, which we have used to document, phylum by phylum, the primary sequence characteristics of FtsZ homologues from the Bacteria, Archaea, and Eukaryota. We provide evidence for at least five independent ftsZ gene-duplication events in the bacterial kingdom and suggest the existence of three ancestoral euryarchaeal FtsZ paralogues. In addition, we identify "FtsZ-like" sequences from Bacteria and Archaea that, while showing significant sequence similarity to FtsZs, are unlikely to bind and hydrolyze GTP.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-003-2523-5DOI Listing

Publication Analysis

Top Keywords

ftsz
8
ftsz protein
8
ftsz homologues
8
bacteria archaea
8
molecular evolution
4
evolution ftsz
4
sequences
4
protein sequences
4
sequences encoded
4
encoded genomes
4

Similar Publications

In most bacteria, cell division depends on the tubulin-homolog FtsZ that polymerizes in a GTP-dependent manner to form the cytokinetic Z-ring at the future division site. Subsequently, the Z-ring recruits, directly or indirectly, all other proteins of the divisome complex that executes cytokinesis. A critical step in this process is the precise positioning of the Z-ring at the future division site.

View Article and Find Full Text PDF

Magnolol as an Antibacterial Agent Against Drug-resistant Bacteria Targeting Filamentous Temperature-sensitive Mutant Z.

Chem Biodivers

December 2024

State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P. R. China.

The emergence of multiple drug-resistant bacteria poses critical health threats worldwide. It is urgently needed to develop potent and safe antibacterial agents with novel bactericidal mechanisms to treat these infections. In this study, magnolol was identified as a potential bacterial cell division inhibitor by a cell-based screening approach.

View Article and Find Full Text PDF

The relation in MreB and intrabacterial nanotransportation system for VacA in Helicobacter pylori.

Med Mol Morphol

December 2024

Project Team for Study of Nanotransportation System, Center for Medical Research and Development, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-Machi, Takatsuki, Osaka, 569-8686, Japan.

Helicobacter pylori possesses an intrabacterial nanotransportation system (ibNoTS) for transporting VacA, CagA, and urease within the bacterial cytoplasm. This system is controlled by the extrabacterial environment. The transport routes of the system for VacA have not yet been studied in detail.

View Article and Find Full Text PDF

Z-ring formation by FtsZ, the master assembler of the divisome, is a key step in bacterial cell division. Membrane anchoring of the Z-ring requires the assistance of dedicated Z-ring binding proteins, such as SepF and FtsA. SepF participates in bundling and membrane anchoring of FtsZ in gram-positive bacteria.

View Article and Find Full Text PDF

Unlabelled: Cell division is a fundamental process ensuring the perpetuation of all cellular life forms. Archaea of the order Sulfolobales divide using a simpler version of the eukaryotic endosomal sorting complexes required for transport (ESCRT) machinery, composed of three ESCRT-III homologs (ESCRT-III, -III-1, and -III-2), AAA+ ATPase Vps4 and an archaea-specific component CdvA. Here, we clarify how these components act sequentially to drive the division of the hyperthermophilic archaeon .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!