Bimolecular processes on silica gel surfaces: energetic factors in determining electron-transfer rates.

Photochem Photobiol Sci

Department of Chemistry, Loughborough University, Loughborough, Leicestershire, UKLE11 3TU.

Published: January 2004

Triplet state and radical cation formation is observed following laser excitation of anthracene, phenanthrene and naphthalene (and their derivatives) adsorbed on silica gel. Energy- and electron-transfer reactions of these compounds with co-adsorbed azulene have been studied using a time-resolved diffuse reflectance laser flash photolysis technique. Triplet energy transfer from the arene derivative to azulene and electron transfer from azulene to the arene radical cation have been investigated in order to distinguish between diffusional and energetic control in these systems. Energy and electron transfer can be studied independently due to differing absorption properties and energy dependencies of production of the triplet states and radical cations. Transient decay kinetics for both electron and energy transfer have been modelled using two different rate constant distributions: a log Gaussian and a symmetrical Levy stable distribution. The latter model has also been demonstrated to be applicable to the decay of radical cations in the absence of an electron donor, which cannot be adequately described by the Gaussian model. Energy-transfer rates between the arene derivatives and azulene have been found to be close to the diffusion-controlled limit; however, in most cases, the rate of electron transfer is considerably lower. A correlation between the bimolecular rate constant and free energy of electron transfer has been found, indicating a Marcus inverted region. Compounds with bulky substituents show a further reduction in the rate of electron transfer, suggesting that an additional steric factor is involved in this process.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b308033aDOI Listing

Publication Analysis

Top Keywords

electron transfer
20
silica gel
8
radical cation
8
energy transfer
8
energy electron
8
radical cations
8
rate constant
8
rate electron
8
transfer
7
electron
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!