Objective: To investigate the effects of mild to moderate caloric restriction on parameters of body growth, fat mass, and adipose tissue cellularity in female and male Wistar rats.

Research Methods And Procedures: Three-month-old female and male Wistar rats were subjected to a chronic, mild to moderate caloric restriction paradigm (5%, 10%, or 20% reduction in caloric intake from ad libitum values) for 6 months. This was accomplished using a unique automated feeder system tailored to the food consumption levels of individual rats. Body weight and length, weight of lean organs, regional adipose mass, and adipose cellularity were measured before and after the diet restriction.

Results: Caloric restriction produced proportional decelerations in body weight increases in both genders, without significant changes in body length or lean organ mass. Marked and disproportional reductions in regional adipose tissue mass were produced at all levels of food restriction (even at 5% restriction). An unexpected finding was that in response to graded caloric restriction, female rats preserved adipose fat cell number at the expense of fat cell volume, whereas the converse was seen for male rats.

Discussion: These studies demonstrate a sexual dimorphism in the response to mild to moderate degrees of chronic caloric restriction. At low levels of caloric restriction, it is possible to affect regional adipose mass and cellularity while preserving lean organ mass.

Download full-text PDF

Source
http://dx.doi.org/10.1038/oby.2004.18DOI Listing

Publication Analysis

Top Keywords

caloric restriction
28
adipose mass
12
mild moderate
12
regional adipose
12
restriction
9
sexual dimorphism
8
dimorphism response
8
mass cellularity
8
caloric
8
graded caloric
8

Similar Publications

Exposure to toxins causes lasting damaging effects on the body. Numerous studies in humans and animals suggest that diet has the potential to modify the epigenome and these modifications can be inherited transgenerationally, but few studies investigate how diet can protect against negative effects of toxins. Potential evidence in the primary literature supports that caloric restriction, high-fat diets, high protein-to-carbohydrate ratios, and dietary supplementation protect against environmental toxins and strengthen these effects on their offspring's epigenome.

View Article and Find Full Text PDF

To determine the basis for perinatal nutritional mismatch causing metabolic dysfunction associated steatotic liver disease (MASLD) and diabetes mellitus, we examined adult phenotype, hepatic transcriptome, and pancreatic β-islet function. In prenatal caloric restricted rat with intrauterine growth restriction (IUGR) and postnatal exposure to high fat with fructose (HFhf) or high carbohydrate (RC), we investigated male and female IUGR-Hfhf and IUGR-RC, versus HFhf and CON offspring. Males more than females displayed adiposity, glucose intolerance, insulin resistance, hyperlipidemia, hepatomegaly with hepatic steatosis.

View Article and Find Full Text PDF

Objectives: Epithelial ovarian cancer is a significant contributor to cancer-related mortality in women, frequently recurring post-treatment, often accompanied by chemotherapy resistance. Dietary interventions have demonstrated influence on cancer progression; for instance, caloric restriction has exhibited tumor growth reduction and enhanced survival in animal cancer models. In this study, we calculated a transcriptomic signature based on caloric-restriction for ovarian cancer patients and explored its correlation with ovarian cancer progression.

View Article and Find Full Text PDF

Declines in lysosomal acidification and function with aging are observed in organisms ranging from yeast to humans. V-ATPases play a central role in organelle acidification, and V-ATPase activity is regulated by reversible disassembly in many different settings. Using the yeast Saccharomyces cerevisiae as a replicative aging model, we demonstrate that V-ATPases disassemble into their V and V subcomplexes in aging cells, with release of V subunit C (Vma5) from the lysosome-like vacuole into the cytosol.

View Article and Find Full Text PDF

Maternal circadian rhythms during pregnancy dictate metabolic plasticity in offspring.

Cell Metab

January 2025

Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; Center for Preventive Medicine, Keio University, Tokyo, Japan. Electronic address:

Tissue-level oscillation is achieved by tissue-intrinsic clocks along with network-dependent signals originating from distal organs and organismal behavior. Yet, it remains unexplored whether maternal circadian rhythms during pregnancy influence fetal rhythms and impact long-term susceptibility to dietary challenges in offspring. Here, we demonstrate that circadian disruption during pregnancy decreased placental and neonatal weight yet retained transcriptional and structural maturation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!