Unlabelled: Heat and moisture exchangers (HMEs) are used to provide humidification and warming of the inspiratory gases during general anesthesia. The performance specifications provided by manufacturers of HMEs are based on in vitro measurements of moisture output using the International Standards Organization (ISO) 9360 method. We studied the in vivo performance of three different HMEs with similar ISO specifications in a randomized crossover fashion in patients under general anesthesia. The effect of each HME on temperature, convective heat loss, evaporative heat loss, total heat loss, relative humidity, and absolute humidity of inspiratory gases was determined. Although all HMEs in general improved baseline variables, we found significant differences in performance for the different HMEs. In only one type did the moisture output correspond with ISO specifications. We conclude that the in vivo performance of HMEs may not correspond with manufacturer's specifications.

Implications: There is considerable variability in the in vivo performance of heat and moisture exchangers that have similar manufacturer specifications. These specifications, based on the International Standards Organization 9360 standard, which is measured in vitro, cannot be used to predict clinical performance.

Download full-text PDF

Source
http://dx.doi.org/10.1213/01.ANE.0000096560.96727.37DOI Listing

Publication Analysis

Top Keywords

heat moisture
12
vivo performance
12
heat loss
12
moisture exchangers
8
inspiratory gases
8
general anesthesia
8
moisture output
8
international standards
8
standards organization
8
iso specifications
8

Similar Publications

Recently, there has been growing interest in knowing the best hygrometry level during high-flow nasal oxygen and non-invasive ventilation (NIV) and its potential influence on the outcome. Various studies have shown that breathing cold and dry air results in excessive water loss by nasal mucosa, reduced mucociliary clearance, increased airway resistance, reduced epithelial cell function, increased inflammation, sloughing of tracheal epithelium, and submucosal inflammation. With the Coronavirus Disease 2019 pandemic, using high-flow nasal oxygen with a heated humidifier has become an emerging form of non-invasive support among clinicians.

View Article and Find Full Text PDF

The most disastrous heatwaves are very extreme events with return periods of hundreds of years, but traditionally, climate research has focussed on moderate extreme events occurring every couple of years or even several times within a year. Here, we use three Earth System Model large ensembles to assess whether very extreme heat events respond differently to global warming than moderate extreme events. We find that the warming signal of very extreme heat can be amplified or dampened substantially compared to moderate extremes.

View Article and Find Full Text PDF

Steam injection, especially in a superheated state, increases the rate of heat transfer and improves the quality of the baked products. In this research, different baking methods (forced convention, superheated steam, and superheated steam-assisted) at different temperatures (140°C, 160°C, 180°C) were applied to produce a new formulated rice cake containing acorn flour and inulin. The findings revealed that the level of moisture inside the oven directly influences the volume of the cake.

View Article and Find Full Text PDF

Background: Although the association of peripheral skin temperature with infection, serious illness and death have been recognised for centuries, few studies have explicitly compared this finding with other bedside indicators of illness severity. This study compared subjectively assessed dorsal forearm skin temperature and moisture with other indicators of illness severity.

Methods: Non-interventional observational study of acutely ill medical patients admitted to a low-resource Ugandan hospital, which examined the association of subjectively assessed dorsal forearm skin temperature and other bedside findings with death within 24 h.

View Article and Find Full Text PDF

From synthesis to application: a review of BaZrS chalcogenide perovskites.

Nanoscale

January 2025

Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.

Chalcogenide perovskites are gaining prominence as earth-abundant and non-toxic solar absorber materials, crystallizing in a distorted perovskite structure. Among these, BaZrS has attracted the most attention due to its optimal bandgap and its ability to be synthesized at relatively low temperatures. BaZrS exhibits a high light absorption coefficient, excellent stability under exposure to air, moisture, and heat, and is composed of earth-abundant elements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!