Clinical failures of the highly active antiretroviral therapy could result from inefficient intracellular concentrations of antiviral drugs. The determination of drug contents in target cells of each patient would be useful in clinical investigations and trials. The purpose of this work was to quantify the intracellular concentration of ddATP, the active metabolite of dideoxyinosine (ddI), in peripheral blood mononuclear cells (PBMCs) of human immunodeficiency virus (HIV)-infected patients treated with ddI. We have raised antibodies against ddA-citrate, a stable isostere of ddATP selected on the basis of its structural and electronic analogies with ddATP. The anti-ddA-citrate antibodies recognized ddATP and ddA with nanomolar affinities and cross-reacted neither with any of the nucleotide reverse transcriptase inhibitors used in HIV therapy nor with their phosphorylated metabolites. The three phosphorylated metabolites of ddI (ddAMP, ddADP, and ddATP) were purified by anion exchange chromatography and the amount of each metabolite was determined by radioimmunoassay with or without prior phosphatase treatment. The intracellular levels of the three ddI metabolites were measured both in an in vitro model and in PBMCs of HIV-infected patients under ddI treatment. The possibility to measure intracellular levels of ddATP from small blood samples of HIV-infected patients treated with ddI could be exploited to develop individual therapeutic monitoring.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC321518 | PMC |
http://dx.doi.org/10.1128/AAC.48.2.589-595.2004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!