The gamma-aminobutyric acid type A (GABA(A)) receptor is an important pharmacological target of ethanol. The effect of ethanol withdrawal on the expression of the alpha(2) subunit of this receptor was examined with rat cerebellar granule cells in primary culture. Long-term exposure of these cells to ethanol (100 mM, 5 days) did not affect the abundance of the mRNA for the alpha(2) subunit, as revealed by an RNase protection assay. In contrast, subsequent ethanol withdrawal for 3 h induced a marked increase in the amount of this mRNA (2.6-fold) as well as in that of the encoded polypeptide (2.2-fold), the latter revealed by immunoblot analysis. Exposure of the cells to gamma-hydroxybutyric acid (100 mM) during ethanol withdrawal prevented the increase in the amounts of both the alpha(2) mRNA and polypeptide, whereas similar treatment with diazepam (10 microM) blocked the increase in the abundance of the alpha(2) polypeptide but not that in the amount of the alpha(2) mRNA. The effect of gamma-hydroxybutyric acid was not blocked by the competitive GABA(B) receptor antagonist SCH 50911(10 microM). Given that the alpha(2) subunit of the GABA(A) receptor mediates the anxiolytic action of benzodiazepines, its up-regulation during discontinuation of long-term ethanol exposure might be relevant to the therapeutic efficacy of these drugs in the treatment of anxiety associated with ethanol withdrawal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molbrainres.2003.10.011DOI Listing

Publication Analysis

Top Keywords

alpha2 subunit
16
ethanol withdrawal
16
gabaa receptor
12
gamma-hydroxybutyric acid
12
ethanol
8
subunit gabaa
8
exposure cells
8
alpha2 mrna
8
alpha2
7
receptor
5

Similar Publications

Aims: N-Demethylsinomenine (NDSM) demonstrates good analgesic efficacy in preclinical pain models. However, how NDSM exerts analgesic actions remains unknown.

Methods: We examined the analgesic effects of NDSM using both pain-evoked and pain-suppressed behavioral assays in two persistent pain models.

View Article and Find Full Text PDF

SF1-specific deletion of the energy sensor AMPKγ2 induces obesity.

Mol Metab

December 2024

Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain. Electronic address:

Objective: AMP-activated protein kinase (AMPK) is a heterotrimer complex consisting of a catalytic α subunit (α1, α2) with a serine/threonine kinase domain, and two regulatory subunits, β (β1, β2) and γ (γ1, γ2, γ3), encoded by different genes. In the hypothalamus, AMPK plays a crucial role in regulating energy balance, including feeding, energy expenditure, peripheral glucose and lipid metabolism. However, most research on hypothalamic AMPK has concentrated on the catalytic subunits AMPKα1 and AMPKα2, with little focus on the regulatory subunits.

View Article and Find Full Text PDF

Background: Variants in the GABRA2 gene, which encodes the α2 subunit of the γ-aminobutyric acid A receptor, have been linked to a rare form of developmental and epileptic encephalopathy (DEE) referred to as DEE78. Only eight patients have been reported globally. This study presents the clinical presentation and genetic analysis of a Chinese family with a child diagnosed with DEE78, due to a novel GABRA2 variant.

View Article and Find Full Text PDF

Objective: To compare biomarkers of neurovascular unit (NVU) - S100β, NSE, BDNF and indicators of the brain electrical activity in patients who underwent coronary artery bypass grafting (CABG) depending on the use of different versions of multi-tasking cognitive training (CT).

Material And Methods: The study included 89 people, of whom 47 completed the CTI (postural and three cognitive tasks (counting backwards, verbal fluency and the open-ended task «Unusual use of an ordinary object») and 42 patients, who underwent CTII (visuomotor reaction and the same cognitive tasks) in the early postoperative CABG period. The patients of both groups underwent complex testing of psychomotor, executive functions, attention, short-term memory and EEG study in the perioperative period of CABG.

View Article and Find Full Text PDF

Early developmental changes in GABAA receptor expression in nucleus accumbens medium spiny neurons.

Front Neurosci

December 2024

Stress Neurobiology Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States.

The expression of GABARs goes through large scale, evolutionarily conserved changes through the early postnatal period. While these changes have been well-studied in brain regions such as the hippocampus and sensory cortices, less is known about early developmental changes in other brain areas. The nucleus accumbens (NAc) is a major hub in the circuitry that mediates motivated behaviors and disruptions in NAc activity is a part of the neuropathology observed in mood and substance use disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!