3-trifluoromethyl-4-nitro-5-arylpyrazoles are novel K(ATP) channel agonists.

Bioorg Med Chem Lett

GlaxoSmithKline Research & Development, 5 Moore Drive, Research Triangle Park, NC 27709, USA.

Published: February 2004

This communication describes the discovery and synthesis of a series of 3-trifluoromethyl-4-nitro-5-arylpyrazoles as potent K(ATP) channel agonists. The most potent compound reported is ca. 100-fold more potent than diazoxide and exhibits selectivity for the SUR1 K(ATP) channel subtype. The 4-nitro substitutent on the pyrazole ring was required for activity, and limited SAR suggests that the de-protonated pyrazole maybe the active species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2003.10.066DOI Listing

Publication Analysis

Top Keywords

katp channel
12
channel agonists
8
3-trifluoromethyl-4-nitro-5-arylpyrazoles novel
4
novel katp
4
agonists communication
4
communication describes
4
describes discovery
4
discovery synthesis
4
synthesis series
4
series 3-trifluoromethyl-4-nitro-5-arylpyrazoles
4

Similar Publications

Analyzing the genetic architecture of hereditary forms of diabetes in different populations is a critical step toward optimizing diagnostic and preventive algorithms. This requires consideration of regional and population-specific characteristics, including the spectrum and frequency of pathogenic variants in targeted genes. As part of this study, we used a custom-designed NGS panel to screen for mutations in 28 genes associated with the pathogenesis of hereditary diabetes mellitus in 506 unrelated patients from Russia.

View Article and Find Full Text PDF

Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion.

J Mol Cell Biol

January 2025

Department of Endocrinology, Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China.

Insulin secretion is mainly regulated by two electrophysiological events, depolarization initiated by the closure of ATP-sensitive K+ (KATP) channels and repolarization mediated by K+ efflux. Quinine, a natural component commonly used for the treatment of malaria, has been reported to directly stimulate insulin release and lead to hypoglycemia in patients during treatment through inhibiting KATP channels. In this study, we verified the insulinotropic effect of quinine on the isolated mouse pancreatic islets.

View Article and Find Full Text PDF

Purinergic inhibitory regulation of esophageal smooth muscle is mediated by P2Y receptors and ATP-dependent potassium channels in rats.

J Physiol Sci

January 2025

Department of Basic Veterinary Science, Laboratory of Physiology, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Department of Basic Veterinary Science, Laboratory of Physiology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, 501-1193, Gifu, Japan; Division of Animal Medical Science, Center for One Medicine Innovative Translational Research (COMIT), Gifu University Institute for Advanced Study, 1-1 Yanagido, 501-1193, Gifu, Japan.

Purines such as ATP are regulatory transmitters in motility of the gastrointestinal tract. The aims of this study were to propose functional roles of purinergic regulation of esophageal motility. An isolated segment of the rat esophagus was placed in an organ bath, and mechanical responses were recorded using a force transducer.

View Article and Find Full Text PDF

Regional blood flow within the brain is tightly coupled to regional neuronal activity, a process known as neurovascular coupling (NVC). In this study, we demonstrate the striking role of SUR2- and Kir6.1-dependent ATP-sensitive potassium (K) channels in control of NVC in the sensory cortex of conscious mice, in response to mechanical stimuli.

View Article and Find Full Text PDF

The ATP-sensitive potassium (KATP) channels, composed of Kir6.2 and SUR1 subunits, are essential for glucose homeostasis. While the role of pancreatic KATP channels in regulating insulin secretion is well-documented, the specific contributions of neuronal KATP channels remain unclear due to challenges in precisely targeting neuronal subpopulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!