A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

2D QSAR consensus prediction for high-throughput virtual screening. An application to COX-2 inhibition modeling and screening of the NCI database. | LitMetric

Using classification (SOM, LVQ, Binary, Decision Tree) and regression algorithms (PLS, BRANN, k-NN, Linear), this paper details the building of eight 2D-QSAR models from a 266 COX-2 inhibitor training set. The predictive performances of these eight models were subsequently compared using an 88 COX-2 inhibitor test set. Each ligand is described by 52 2D descriptors expressed as van der Waals Surface Areas (P_VSA) and its COX-2 binding IC50. One of our best predictive models is the neural network model (BRANN), which is able to select a subset, from the 88 ligand test set, that contains 94% COX-2 active inhibitors (pIC50>7.5) and detects 71% of all the actives. We then introduce a QSAR consensus prediction protocol that is shown to be more predictive than any single QSAR model: our C3 consensus approach is able to select a subset from the 88 ligand test set that contains 94% active inhibitors and 83% of all the actives. The 2D QSAR consensus protocol was finally applied to the high-throughput virtual screening of the NCI database, containing 193,477 organic compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ci0341565DOI Listing

Publication Analysis

Top Keywords

qsar consensus
12
test set
12
consensus prediction
8
high-throughput virtual
8
virtual screening
8
screening nci
8
nci database
8
cox-2 inhibitor
8
select subset
8
subset ligand
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!