Small interfering RNA (siRNA) is a powerful tool for the specific silencing of gene expression. We developed an improved vector, pG-SUPER, that co-expresses green fluorescent protein (GFP) and small hairpin RNA simultaneously to facilitate analysis of silencing at the level of individual cells. As a test system, we analyzed lamin A/C knockdown in HeLa cells. The GFP signal was a reliable reporter (93%-98%) of strong knockdown (approximately 90%) over a wide range of GFP intensities. The GFP reporter made possible the application of fluorescent-activated cell sorting (FACS) to purify the knockdown cell population. Such populations facilitated Western blotting analysis to determine depletion of the target protein. pG-SUPER was also applied to evaluate gene replacement by exogenous genes rendered refractory to siRNA by introducing silent mutations. Recovery of lamin A was linearly correlated to the expression level of the rescue gene. pG-SUPER will expand plasmid-based siRNA applications through the easy and reliable detection of knockdown and rescued cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2144/04361ST02 | DOI Listing |
Sci China Life Sci
January 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
The centrosome is the microtubule-organizing center and a crucial part of cell division. Centrosomal RNAs (cnRNAs) have been reported to enable precise spatiotemporal control of gene expression during cell division in many species. Whether and how cnRNAs exist in C.
View Article and Find Full Text PDFChin Med J (Engl)
January 2025
Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimal Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
Background: Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.
View Article and Find Full Text PDFNeurobiol Pain
December 2024
Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Painful diabetic neuropathy (PDN) is a challenging complication of diabetes with patients experiencing a painful and burning sensation in their extremities. Existing treatments provide limited relief without addressing the underlying mechanisms of the disease. PDN involves the gradual degeneration of nerve fibers in the skin.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Biochemistry & Biophysics at the School of Medicine and Dentistry & Center for RNA Biology, University of Rochester, Rochester, NY, USA.
During eukaryotic translation initiation, the small (40S) ribosomal subunit is recruited to the 5' cap and subsequently scans the 5' untranslated region (5' UTR) of mRNA in search of the start codon. The molecular mechanism of mRNA scanning remains unclear. Here, using GFP reporters in cells, we show that order-of-magnitude variations in the lengths of unstructured 5' UTRs have a modest effect on protein synthesis.
View Article and Find Full Text PDFFree Radic Res
January 2025
College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University, Goyang, South Korea.
Cancer genome sequencing studies have identified somatic mutations in the KEAP1/NRF2 pathway. In an effort to identify novel NRF2 small molecule inhibitor(s), we have screened a natural compound library comprising 1330 chemicals in A549-ARE-GFP-luciferase cells and identified that narciclasine significantly inhibits NRF2-dependent luciferase activity. Narciclasine suppressed the expression of NRF2 and NRF2 target genes, caused significant oxidative stress, and sensitized cisplatin-mediated apoptosis in A549 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!