Pharmacokinetics of intrathecal oligodeoxynucleotides.

Anesthesiology

Department of Anesthesiology, University of Washington, Seattle, Washington, USA.

Published: February 2004

Background: Intrathecal administration of antisense oligonucleotides is a frequently used technique to alter gene expression for research purposes. However, in the future, antisense oligonucleotides will likely be administered intrathecally to humans for therapeutic purposes. To date, there have been no systematic studies of the pharmacokinetics of intrathecal oligonucleotides. This study was designed to fill that knowledge gap.

Methods: Microdialysis probes were placed intrathecally at the L4, L1, and T11 vertebral levels and epidurally at the L4 vertebral level in pigs. One of the study oligodeoxynucleotides (10-, 18-, or 30-nucleotide-long sequences of the human MDR-1 gene) was injected intrathecally at the L4 level at time 0. Microdialysis samples were obtained for measurement of oligodeoxynucleotide samples at 5-min intervals until 20 min, 10-min intervals until 60 min, and 20-min intervals until 180 min. Noncompartmental pharmacokinetic analysis was performed using PK Solutions software.

Results: Mean residence time and terminal elimination half-life did not differ significantly among the three oligodeoxynucleotides at any sampling site. In contrast, area under the concentration-time curve differed significantly among the oligodeoxynucleotides at all sampling sites and was inversely related to oligodeoxynucleotide length at the L4 and L1 intrathecal sites but not the T11 or epidural sampling sites. Similarly, clearance and volumes of distribution at the L4 level differed significantly among the oligodeoxynucleotides and were directly related to oligodeoxynucleotide length.

Conclusion: The intrathecal pharmacokinetics of oligodeoxynucleotides are largely determined by oligodeoxynucleotide length. This contrasts with smaller drug molecules, such as opioids, for which intrathecal and epidural pharmacokinetics are largely determined by lipid solubility, not size. The potential clinical utility of this information is that oligodeoxynucleotide distribution within the central nervous system may be controllable to some degree by varying oligodeoxynucleotide length.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00000542-200402000-00021DOI Listing

Publication Analysis

Top Keywords

oligodeoxynucleotide length
12
pharmacokinetics intrathecal
8
antisense oligonucleotides
8
intervals min
8
oligodeoxynucleotides sampling
8
differed oligodeoxynucleotides
8
sampling sites
8
oligodeoxynucleotides
6
oligodeoxynucleotide
6
intrathecal
5

Similar Publications

DAPE cloning with modified primers for producing designated lengths of 3' single-stranded ends in PCR products.

PLoS One

February 2025

Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea (ROK).

For in vitro DNA assembly, enzymes with exonuclease activities have been utilized to generate relatively long recessed ends on DNA fragments, which can anneal to other DNA fragments if they have complementary nucleotide sequences. The combined construct can be directly delivered to competent cells, where the gaps and nicks between the fragments are completely rectified. We introduce a versatile sequence- and ligation-independent cloning (SLIC) method called 'DNA Assembly with Phosphorothioate (PT) and T5 Exonuclease' (DAPE), which generates precise lengths of 3' overhangs at both ends of linearized DNA.

View Article and Find Full Text PDF

Effective subset selection from complex oligonucleotide libraries is crucial for genomics, synthetic biology, and DNA data storage. The polymerase chain reaction, foundational for amplifying target subsets is limited by primer design and length for specificity, which constrains the scalability of oligo libraries and increases the synthesis burden for primers. We introduce an oligo subset selection methodology that utilizes sequence-specific cyclic nucleotide synthesis and blocking of the template oligos.

View Article and Find Full Text PDF

Human monoclonal antibodies (mAbs) are an important segment in precision therapeutics. Various methodologies are available for generating them. Recombinant human mAbs expression from sorted single B cells is preferred for its rapid expression using mammalian vectors while maintaining in vivo immunoglobulin (Ig) pairing.

View Article and Find Full Text PDF

Massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS).

Nat Commun

January 2025

School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.

Chip scale DNA synthesis offers a high-throughput and cost-effective method for large-scale DNA-based information storage. Nevertheless, unbiased information retrieval from low-copy-number sequences remains a barricade that largely arises from the indispensable DNA amplification. Here, we devise a simulation-guided quantitative primer-template hybridization strategy to realize massively parallel homogeneous amplification of chip-scale DNA for DNA information storage (MPHAC-DIS).

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common bone malignancy. c-MET is recognized as a therapeutic target. However, traditional c-MET inhibitors show compromised efficacy due to the acquired resistance and side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!