Olfactory coding at the level of the olfactory bulb is thought to depend upon an ensemble response of mitral cells receiving input from chemotopically-organized projections of olfactory sensory neurons and regulated by lateral inhibitory circuits. Immunocytochemical methods are described to metabolically classify neurons in the developing zebrafish olfactory system based on the relative concentrations of taurine, glutamate, GABA (and potentially other small biogenic amines) and a small guanidium-based cation, agmatine, which labels NMDA-sensitive cells by permeating through active ionotropic glutamate receptor channels. Using metabolic profiling in conjunction with activity dependent labeling we demonstrate that neuronal differentiation in the developing olfactory bulb, as assessed by acquisition of a mature neurochemical profile, and sensitivity to an ionotropic glutamate receptor agonist, NMDA, occurs during the second day of development. This experimental approach is likely to be useful in studies concerned with the development of glutamatergic signaling pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/B:MICS.0000006852.16798.34 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!