We present the discovery of a red supergiant star that exploded as supernova 2003gd in the nearby spiral galaxy M74. The Hubble Space Telescope (HST) and the Gemini Telescope imaged this galaxy 6 to 9 months before the supernova explosion, and subsequent HST images confirm the positional coincidence of the supernova with a single resolved star that is a red supergiant of 8(+4)(-2) solar masses. This confirms both stellar evolution models and supernova theories predicting that cool red supergiants are the immediate progenitor stars of type II-plateau supernovae.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1092967 | DOI Listing |
Nature
September 2024
Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden.
The transport of energy through convection is important during many stages of stellar evolution, and is best studied in our Sun or giant evolved stars. Features that are attributed to convection are found on the surface of massive red supergiant stars. Also for lower-mass evolved stars, indications of convection are found, but convective timescales and sizes remain poorly constrained.
View Article and Find Full Text PDFProc Int Astron Union
January 2023
Dept. of Molecular Astrophysics. IFF-CSIC; Centro de Astrobiología (CAB), CSIC-INTA; Instituut voor Sterrenkunde, KU Leuven; Institut de Radio Astronomie Millimétrique.
Red Supergiant stars (RSGs) are known to eject large amounts of material during this evolutionary phase. However, the processes powering the mass ejection in low- and intermediate-mass stars do not work for RSGs and the mechanism that drives the ejection remains unknown. Different mechanisms have been proposed as responsible for this mass ejection including Alfvén waves, large convective cells, and magnetohydrodynamical (MHD) disturbances at the photosphere, but so far little is known about the actual processes taking place in these objects.
View Article and Find Full Text PDFNature
March 2024
University of Arizona, Tucson, AZ, USA.
Acc Chem Res
November 2023
Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6243, United States.
ConspectusMetal-bearing molecules impact the chemical and physical environment of many astronomical sources such as the circumstellar envelopes of large asymptotic giant branch and red supergiant stars, the interstellar medium, and planetary atmospheres (e.g., ablation of ∼20 tons per day into the Earth's upper atmosphere).
View Article and Find Full Text PDFSci Bull (Beijing)
November 2023
Yunnan Observatories (YNAO), Chinese Academy of Sciences, Kunming 650216, China; Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming 650216, China; International Centre of Supernovae, Yunnan Key Laboratory, Kunming 650216, China.
Type II supernovae represent the most common stellar explosions in the Universe, for which the final stage evolution of their hydrogen-rich massive progenitors towards core-collapse explosion are elusive. The recent explosion of SN 2023ixf in a very nearby galaxy, Messier 101, provides a rare opportunity to explore this longstanding issue. With the timely high-cadence flash spectra taken within 1-5 days after the explosion, we can put stringent constraints on the properties of the surrounding circumstellar material around this supernova.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!