AI Article Synopsis

  • Subarachnoid hemorrhage (SAH) often leads to heart damage (myocardial necrosis), which is traditionally linked to issues like coronary artery disease, but recent evidence suggests it's mainly caused by excessive norepinephrine release from sympathetic nerves.
  • Researchers studied 223 patients with SAH, tracking various factors and cardiac troponin levels over time to see how they relate to heart injury.
  • The findings indicate that a higher Hunt-Hess score, which reflects the severity of neurological injury, along with factors like female sex and heart rate, significantly predicts myocardial necrosis after SAH.

Article Abstract

Background And Purpose: Subarachnoid hemorrhage (SAH) frequently results in myocardial necrosis with release of cardiac enzymes. Historically, this necrosis has been attributed to coronary artery disease, coronary vasospasm, or oxygen supply-demand mismatch. Experimental evidence, however, indicates that excessive release of norepinephrine from the myocardial sympathetic nerves is the most likely cause. We hypothesized that myocardial necrosis after SAH is a neurally mediated process that is dependent on the severity of neurological injury.

Methods: Consecutive patients admitted with SAH were enrolled prospectively. Predictor variables reflecting demographic (age, sex, body surface area), hemodynamic (heart rate, systolic blood pressure), treatment (phenylephrine dose), and neurological (Hunt-Hess score) factors were recorded. Serial cardiac troponin I measurements and echocardiography were performed on days 1, 3, and 6 after enrollment. Troponin level was treated as a dichotomous outcome variable. We performed univariate and multivariate analyses on the relationships between the predictor variables and troponin level.

Results: The study included 223 patients with an average age of 54 years. Twenty percent of the subjects had troponin I levels >1.0 microg/L (range, 0.3 to 50 microg/L). By multivariate logistic regression, a Hunt-Hess score >2, female sex, larger body surface area and left ventricular mass, lower systolic blood pressure, and higher heart rate and phenylephrine dose were independent predictors of troponin elevation.

Conclusions: The degree of neurological injury as measured by the Hunt-Hess grade is a strong, independent predictor of myocardial necrosis after SAH. This finding supports the hypothesis that cardiac injury after SAH is a neurally mediated process.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.STR.0000114874.96688.54DOI Listing

Publication Analysis

Top Keywords

myocardial necrosis
12
subarachnoid hemorrhage
8
necrosis sah
8
sah neurally
8
neurally mediated
8
mediated process
8
predictor variables
8
body surface
8
surface area
8
heart rate
8

Similar Publications

Background: Gastrointestinal bleeding (GIB) is a severe and potentially life-threatening complication in patients with acute myocardial infarction (AMI), significantly affecting prognosis during hospitalization. Early identification of high-risk patients is essential to reduce complications, improve outcomes, and guide clinical decision-making.

Objective: This study aimed to develop and validate a machine learning (ML)-based model for predicting in-hospital GIB in patients with AMI, identify key risk factors, and evaluate the clinical applicability of the model for risk stratification and decision support.

View Article and Find Full Text PDF

Right ventricular myocardial infarction (RVMI) is a significant and distinct form of acute myocardial infarction associated with considerable morbidity and mortality. It occurs most commonly due to proximal right coronary artery obstruction, often in conjunction with inferior myocardial infarction. RVMI poses unique diagnostic and therapeutic challenges due to the anatomical and functional differences between the right and left ventricles.

View Article and Find Full Text PDF

Objective: To investigate the effects and mechanisms of miRNA 221 on myocardial ischemia/reperfusion injury (MIRI) in mice through the regulation of phospholamban (PLB) expression.

Methods: The MIRI mouse model was created and mice were divided into sham, MIRI, MIRI+ 221, and MIRI+ scr groups, with miRNA 221 overexpression induced in the myocardium of MIRI mice by targeted myocardial injection. Quantitative RT-PCR analysis was performed to observe the variation in miRNA 221, PLB, SERCA2, RYR2, NCX1, Cyt C and caspase 3 mRNA levels in myocardium, while Western blot assessed the levels of PLB, p-PLB (Ser16), p-PLB (Thr17), SERCA2, RYR2, NCX1, Cyt C and caspase 3 proteins.

View Article and Find Full Text PDF

Background: Heart muscle damage from myocardial infarction (MI) is brought on by insufficient blood flow. The leading cause of death for middle-aged and older people worldwide is myocardial infarction (MI), which is difficult to diagnose because it has no symptoms. Clinicians must evaluate electrocardiography (ECG) signals to diagnose MI, which is difficult and prone to observer bias.

View Article and Find Full Text PDF

This study aims to evaluate the implementation of concomitant CAD assessment on pre-TAVI (transcatheter aortic valve implantation) planning CTA (CT angiography) aided by CT-FFR (CT-fractional flow reserve) [The CT2TAVI protocol] and investigates the incremental value of CT-FFR to coronary CT angiography (CCTA) alone in the evaluation of patients undergoing CT2TAVI. This is a prospective observational real-world cohort study at an academic health system on consecutive patients who underwent CTA for TAVI planning from 1/2021 to 6/2022. This represented a transition period in our health system, from not formally reporting CAD on pre-TAVI planning CTA (Group A) to routinely reporting CAD on pre-TAVI CTA (Group B; CT2TAVI protocol).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!