Accuracy of task recall for epidemiological exposure assessment to construction noise.

Occup Environ Med

Washington Department of Labor and Industries, Safety and Health Assessment and Research for Prevention Program, PO Box 44330, Olympia, Washington 98504, USA.

Published: February 2004

Aims: To validate the accuracy of construction worker recall of task and environment based information; and to evaluate the effect of task recall on estimates of noise exposure.

Methods: A cohort of 25 construction workers recorded tasks daily and had dosimetry measurements weekly for six weeks. Worker recall of tasks reported on the daily activity cards was validated with research observations and compared directly to task recall at a six month interview.

Results: The mean L(EQ) noise exposure level (dBA) from dosimeter measurements was 89.9 (n = 61) and 83.3 (n = 47) for carpenters and electricians, respectively. The percentage time at tasks reported during the interview was compared to that calculated from daily activity cards; only 2/22 tasks were different at the nominal 5% significance level. The accuracy, based on bias and precision, of percentage time reported for tasks from the interview was 53-100% (median 91%). For carpenters, the difference in noise estimates derived from activity cards (mean 91.9 dBA) was not different from those derived from the questionnaire (mean 91.7 dBA). This trend held for electricians as well. For all subjects, noise estimates derived from the activity card and the questionnaire were strongly correlated with dosimetry measurements. The average difference between the noise estimate derived from the questionnaire and dosimetry measurements was 2.0 dBA, and was independent of the actual exposure level.

Conclusions: Six months after tasks were performed, construction workers were able to accurately recall the percentage time they spent at various tasks. Estimates of noise exposure based on long term recall (questionnaire) were no different from estimates derived from daily activity cards and were strongly correlated with dosimetry measurements, overestimating the level on average by 2.0 dBA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1740710PMC
http://dx.doi.org/10.1136/oem.2002.000489DOI Listing

Publication Analysis

Top Keywords

dosimetry measurements
16
activity cards
16
task recall
12
daily activity
12
percentage time
12
estimates derived
12
worker recall
8
estimates noise
8
construction workers
8
tasks reported
8

Similar Publications

Accurate quantification in emission tomography is essential for internal radiopharmaceutical therapy dosimetry. Mean activity concentration measurements in objects with diameters less than 10 times the full width at half maximum of the imaging system's spatial resolution are significantly affected (>10%) by the partial-volume effect. This study develops a framework for PET and SPECT spatial resolution characterization and proposes 2 MIRD recovery coefficient models-a geometric mean approximation (RECOVER-GM) and an empirical model (RECOVER-EM)-that provide shape-specific partial-volume correction (PVC).

View Article and Find Full Text PDF

The effects of age and other individual factors on radiation induced ESR signals from fingernails.

Front Public Health

January 2025

Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan.

Biodosimetry is crucial for assessing ionizing radiation exposure to guide medical responses. Electron spin resonance (ESR) spectroscopy using fingernails can be effectively used for both occupational and public dose assessments in radiological accidents because of their accessibility and ability to retain stable radiation-induced free radicals. However, despite two decades of research, challenges remain in achieving accurate fingernail dosimetry, mainly owing to the variation in ESR signals among individuals.

View Article and Find Full Text PDF

True total-body and extended axial field-of-view (AFOV) PET/CT with 1m or more of body coverage are now commercially available and dramatically increase system sensitivity over conventional AFOV PET/CT. The Siemens Biograph Vision Quadra (Quadra), with an AFOV of 106cm, potentially allows use of significantly lower administered radiopharmaceuticals as well as reduced scan times. The aim of this study was to optimise acquisition protocols for routine clinical imaging with FDG on the Quadra the prioritisation of reduced activity given physical infrastructure constraints in our facility.

View Article and Find Full Text PDF

Purpose: This study evaluated beam quality and radiation dosimetry of a CT scanner equipped with a novel detector and filtration technology called PureVision Optics (PVO). PVO features miniaturized electronics, a detector cut with microblade technology, and increased filtration in order to increase x-ray detection and reduce image noise.

Methods: We assessed the performance of two similar 320-detector CT scanners: one equipped with PVO and one without.

View Article and Find Full Text PDF

H*10 neutron dosimetry (unlike gamma dosimetry), requires consideration of neutron energy spectra due to the 20× variation of the weight factor over the thermal-to-fast energy range, as well as the neutron radiation field dose rates ranging from cosmic, ~.01 μSv h-1 levels to commonly encountered ~10-200 μSv h-1 in nuclear laboratories/processing plants, and upwards of 104 Sv h-1 in nuclear reactor environments. This paper discusses the outcome of the comparison of spectrum-weighted neutron dosimetry covering thermal-to-fast energy using the novel H*-TMFD spectroscopy-enabled sensor system in comparison with measurements using state-of-the-art neutron dosimetry systems at SRNS-Rotating Spectrometer (ROSPEC), and non-spectroscopic Eberline ASP2E ("Eberline") and Ludlum 42-49B ("Ludlum") survey instrumentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!