Contrasting roles for CXCR2 during experimental colitis.

Exp Mol Pathol

Gastrointestinal Research Group, Faculty of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1.

Published: February 2004

Neutrophil recruitment into the colon is believed to play a crucial pathogenic role in the progression of clinical and experimental inflammatory bowel diseases (IBDs). The chemokine receptor CXCR2 is highly expressed on neutrophils, and promotes neutrophil recruitment in several inflammatory diseases. The present study determined the biological role of CXCR2 during trinitrobenzene sulfonic acid (TNBS)-induced colitis in the rat by assessing effects of CXCR2 antibody neutralization on neutrophil accumulation during the early (8 h) and late phase (day 7) of TNBS-induced colitis. CXCR2 expression was elevated (>3-fold above control) within 8 h and remained elevated to day 7 of colitis induction, in parallel with significant increases in neutrophil infiltration. Treatment of colitic rats with a single dose of CXCR2 neutralizing antibody significantly reduced colonic neutrophil accumulation during the early (8 h) phase of TNBS-induced colitis. However, chronic administration of CXCR2 antibody did not reduce colonic neutrophil accumulation during the late phase (day 7) of TNBS-induced colitis. In summary, the present findings suggest a functional role for CXCR2 in initiating neutrophil recruitment during the early phase of TNBS-induced acute colitis, and demonstrate that: early colonic neutrophil accumulation is CXCR2 dependent and the late phase colonic neutrophil accumulation is CXCR2 independent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexmp.2003.08.004DOI Listing

Publication Analysis

Top Keywords

neutrophil accumulation
20
tnbs-induced colitis
16
colonic neutrophil
16
neutrophil recruitment
12
late phase
12
cxcr2
10
neutrophil
9
role cxcr2
8
cxcr2 antibody
8
accumulation early
8

Similar Publications

Acute pancreatitis (AP) is a highly fatal pancreatic inflammation. In recent years, synthetic nanoparticles have been extensively developed as drug carriers to address the challenges of systemic adverse reactions and lack of specificity in drug delivery. However, systemically administered nanoparticle therapy is rapidly cleared from circulation by the mononuclear phagocyte system (MPS), leading to suboptimal drug concentrations in inflamed tissues and suboptimal pharmacokinetics.

View Article and Find Full Text PDF

A Facile Approach To Develop Ion Pair Micelles Satellited Freshly Derived Neutrophils For Targeted Tumor Therapy.

Adv Healthc Mater

January 2025

Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.

Immune cells show enormous potential for targeted nanoparticle delivery due to their intrinsic tumor-homing skills. However, the immune cells can internalize the nanoparticles, leading to cellular functional impairments, degradation of the nanoparticles, and delayed release of drugs from the immune cells. To address these issues, this study introduces an approach for the synthesis of freshly derived neutrophils (NUs)-based nanocarriers system where the NUs are surfaced by dialdehyde alginate-coated self-assembled micelles loaded with mitoxantrone (MIT) and indocyanine green (ICG) (i.

View Article and Find Full Text PDF

Doxorubicin-induced cardiotoxicity (DIC) is one of the most severe side effects of doxorubicin, yet the underlying mechanisms remain incompletely understood. Our results showed that Neutrophil extracellular traps (NETs) accumulated in plasma and cardiac tissue after doxorubicin treatment. The inhibition of NETs formation by Pad4 gene ablation significantly attenuated doxorubicin-induced arrhythmia, prolonged survival time and reduced the levels of Troponin T (cTnT) and creatine kinase MB (CK-MB) in mice.

View Article and Find Full Text PDF

Dengue virus (DENV) poses a considerable threat to public health on a global scale, since about two-thirds of the world's population is currently at risk of contracting this arbovirus. Being transmitted by mosquitoes, this virus is associated with a range of illnesses and a small percentage of infected individuals might suffer from severe vascular leakage. This leakage leads to hypovolemic shock syndrome, generally known as dengue shock syndrome, organ failure, and bleeding complications.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) represent new therapeutic candidates against glioblastoma multiforme (GBM); however, their efficacy is clinically limited due to both local and systemic immunosuppressive environments. Hence, therapeutic approaches that stimulate local and systemic immune environments can improve the efficacy of ICIs. Here, we report an adoptive cell therapy employing neutrophils (NE) that are activated via surface attachment of drug-free disk-shaped backpacks, termed Cyto-Adhesive Micro-Patches (CAMPs) for treating GBM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!