How kinetochores bind to microtubules and move on the mitotic spindle remain unanswered questions. Multiple systems have implicated the Ndc80/Hec1 (Ndc80) kinetochore complex in kinetochore-microtubule interaction and spindle checkpoint activity. In budding yeast, Ndc80 copurifies with three additional interacting proteins: Nuf2, Spc24, and Spc25. Although functional vertebrate homologs of Ndc80 and Nuf2 exist, extensive sequence similarity searches have not uncovered homologs of Spc24 and Spc25. We have purified the xNdc80 complex to homogeneity from Xenopus egg extracts and identified two novel interacting proteins. Although the sequences have greatly diverged, we have concluded that these are the functional homologs of the yeast Spc24 and Spc25 proteins based on limited sequence similarity, common coiled-coil domains, kinetochore localization, similar phenotypes, and copurification with xNdc80 and xNuf2. Using both RNAi and antibody injection experiments, we have extended previous characterization of the complex and found that Spc24 and Spc25 are required not only to establish, but also to maintain kinetochore-microtubule attachments and metaphase alignment. In addition, we show that Spc24 and Spc25 are required for chromosomal movement to the spindle poles in anaphase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2003.12.058 | DOI Listing |
Mol Biol Cell
December 2024
Dept. of Genetics.
Ribosome biogenesis (RB) is an intricate and evolutionarily conserved process that takes place mainly in the nucleolus and is required for eukaryotic cells to maintain homeostasis, grow in size, and divide. Our laboratory has identified the NUF2 protein, part of the mitotic kinetochore, in a genome-wide siRNA screen for proteins required for making ribosomes in MCF10A human breast epithelial cells (Farley-Barnes, 2018). After rigorous validation and using several biochemical and cell-based assays, we find a role for NUF2 in pre-rRNA transcription, the primary and rate-limiting step of RB.
View Article and Find Full Text PDFScience
September 2024
Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
Faithful chromosome segregation requires biorientation, where the pair of kinetochores on the chromosome establish bipolar microtubule attachment. The integrity of the kinetochore, a macromolecular complex built on centromeric DNA, is required for biorientation, but components sufficient for biorientation remain unknown. Here, we show that tethering the outer kinetochore heterodimer NDC80-NUF2 to the surface of apolar microbeads establishes their biorientation-like state in mouse cells.
View Article and Find Full Text PDFMol Cancer Res
May 2024
Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
Genetics
February 2024
Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, 10099 Berlin, Germany.
Chromosome segregation is crucial for the faithful inheritance of DNA to the daughter cells after DNA replication. For this, the kinetochore, a megadalton protein complex, assembles on centromeric chromatin containing the histone H3 variant CENP-A, and provides a physical connection to the microtubules. Here, we report an unanticipated role for enzymes required for β-1,6- and β-1,3-glucan biosynthesis in regulating kinetochore function in Saccharomyces cerevisiae.
View Article and Find Full Text PDFGenetics
April 2023
Institut für Biologie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany.
Post-translational modifications on histones are well known to regulate chromatin structure and function, but much less information is available on modifications of the centromeric histone H3 variant and their effect at the kinetochore. Here, we report two modifications on the centromeric histone H3 variant CENP-A/Cse4 in the yeast Saccharomyces cerevisiae, methylation at arginine 143 (R143me) and lysine 131 (K131me), that affect centromere stability and kinetochore function. Both R143me and K131me lie in the core region of the centromeric nucleosome, near the entry/exit sites of the DNA from the nucleosome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!