In variable environments, it is probable that environmental conditions in the past can influence demographic performance now. Cohort effects occur when these delayed life-history effects are synchronized among groups of individuals in a population. Here we show how plasticity in density-dependent demographic traits throughout the life cycle can lead to cohort effects and that there can be substantial population dynamic consequences of these effects. We show experimentally that density and food conditions early in development can influence subsequent juvenile life-history traits. We also show that conditions early in development can interact with conditions at maturity to shape future adult performance. In fact, conditions such as food availability and density at maturity, like conditions early in development, can generate cohort effects in mature stages. Based on these data, and on current theory about the effects of plasticity generated by historical environments, we make predictions about the consequences of such changes on density-dependent demography and on mite population dynamics. We use a stochastic cohort effects model to generate a range of population dynamics. In accordance with the theory, we find the predicted changes in the strength of density dependence and associated changes in population dynamics and population variability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/381056 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!