Arsenic biomonitoring using a hyperaccumulator fern (Pteris vittata).

J Environ Monit

Dipartimento di Chimica e Tecnologie Farmaceutiche ed Alimentari, Università di Genova, Via Brigata Salerno, 16147 Genova, Italy.

Published: January 2004

Samples of Pteris vittata L. (brake fern or ladder brake) collected in Genova and in areas outside urban centres, have been analysed for arsenic content in order to assess if hyper accumulating plants are suitable for monitoring purposes. Hyper accumulation ability of the Ligurian fern populations was evaluated by analysing specimens grown with hydroponic media added with As(v). Arsenic concentrations in the range 2-310 microg g(-1) dry weight have been measured in samples collected in different sites along the Ligurian coast. Arsenic concentrations in fern fronds correlate with the estimated arsenic emission in the area, verifying the applicability of P. vittata as an arsenic biomonitor.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b307981cDOI Listing

Publication Analysis

Top Keywords

pteris vittata
8
arsenic concentrations
8
arsenic
6
arsenic biomonitoring
4
biomonitoring hyperaccumulator
4
fern
4
hyperaccumulator fern
4
fern pteris
4
vittata samples
4
samples pteris
4

Similar Publications

Recruitment of copiotrophic and autotrophic bacteria by hyperaccumulators enhances nutrient cycling to reclaim degraded soils at abandoned rare earth elements mining sites.

J Hazard Mater

January 2025

Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China. Electronic address:

Hyperaccumulators harbor potentials for remediating rare earth elements (REEs)-contaminated soils. However, how they thrive in low-nutrient abandoned REEs mining sites is poorly understood. Three ferns (REEs-hyperaccumulators Dicranopteris pedata and Blechnum orientale, and non-hyperaccumulator Pteris vittata) along with their rhizosphere soils were collected to answer this question by comparing differences in soil nutrient levels, soil and plant REEs concentrations, and bacterial diversity, composition, and functions.

View Article and Find Full Text PDF

Arsenic modifies the microbial community assembly of soil-root habitats in .

ISME Commun

January 2025

Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.

, renowned for its ability to hyperaccumulate arsenic, presents a promising solution to the escalating issue of global soil arsenic contamination. This fern cultivates a unique underground microbial community to enhance its environmental adaptability. However, our understanding of the assembly process and the long-term ecological impacts of this community remains limited, hindering the development of effective soil remediation strategies.

View Article and Find Full Text PDF

enhances L. arsenic resistance and accumulation by mediating the rapid reduction and transport of arsenic in roots.

Front Plant Sci

November 2024

Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, China.

Arbuscular mycorrhizal fungi (AMF) have been widely shown to significantly promote the growth and recovery of L. growth and repair under arsenic stress; however, little is known about the molecular mechanisms by which AMF mediate the efficient uptake of arsenic in this species. To understand how AMF mediate arsenic metabolism under arsenic stress, we performed root transcriptome analysis before and after () colonization.

View Article and Find Full Text PDF

Arsenic-induced enhancement of diazotrophic recruitment and nitrogen fixation in Pteris vittata rhizosphere.

Nat Commun

November 2024

Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.

Heavy metal contamination poses an escalating global challenge to soil ecosystems, with hyperaccumulators playing a crucial role in environmental remediation and resource recovery. The enrichment of diazotrophs and resulting nitrogen accumulation promoted hyperaccumulator growth and facilitated phytoremediation. Nonetheless, the regulatory mechanism of hyperaccumulator biological nitrogen fixation has remained elusive.

View Article and Find Full Text PDF

The accumulation of heavy metals (i.e., As, Cu, Ni, Pb, and Zn) in soils and native plant species near copper, nickel, and pyrite mines in Vietnam was assessed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!