Determination of unreacted 2,4-toluene diisocyanate (2,4TDI) and 2,6-toluene diisocyanate (2,6TDI) in foams at ultratrace level by using HPLC-CIS-MS-MS.

Analyst

Institut de recherche Robert-Sauvé en santé et en sécurité du travail, 505 West De Maisonneuve Blvd., Montréal, Québec, Canada H3A 3C2.

Published: December 2003

Isocyanates can cause occupational asthma. By using available HPLC-UVF methods, isocyanates can be quantified only at levels above 1% of the Permissible Exposure Limits (PEL). Once sensitized, workers can react to concentrations below these limits of detection (LOD) making these methods insufficiently sensitive to adequately evaluate trace amounts of isocyanates present in air or in materials at safe levels for sensitized workers. This article describes a novel method for isocyanate analysis allowing the quantification of 2,4TDI and 2,6TDI monomers at very low concentrations using HPLC-CIS-MS-MS. The method's sensitivity increases with a decrease in the alkali radius. The LOD is 0.039 ng mL(-1) for 2,4TDI and 0.100 ng mL(-1) for 2,6TDI in solution when lithium is the alkali adduct, which is 20 times more sensitive than HPLC-UVF method. This new method allows determination in foam at levels of 0.078 ng g(-1) for 2,4TDI and 0.200 ng g(-1) for 2,6TDI respectively, for a 0.5 g foam sample. This is more than 100 times more sensitive than other methods for determining free monomers in solid materials. Analytical reproducibility and precision are better than 92% and 93% for both diisocyanate monomers. The use of HPLC-UVF conventional method failed to detect unreacted isocyanates in foam samples, but TDI monomers were quantified by HPLC-CIS-MS-MS.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b310463jDOI Listing

Publication Analysis

Top Keywords

sensitized workers
8
times sensitive
8
determination unreacted
4
unreacted 24-toluene
4
24-toluene diisocyanate
4
24tdi
4
diisocyanate 24tdi
4
24tdi 26-toluene
4
26-toluene diisocyanate
4
26tdi
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!