A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitric oxide modulates microglial activation. | LitMetric

Background: Nitric oxide (NO) has important physiological regulatory roles, i.e, vasodilation, neurotransmitter release, etc. Little is known about the processes in neural tissues, which stabilize microglia. This study attempts to answer this question by demonstrating a role for basal NO in maintaining microglia juxtaposed to neurons.

Material/methods: Mytilus edulis (a marine bivalve), were used to examine microglia egress from excised pedal ganglia microscopically. Nitric oxide is measured in excised pedal ganglia amperometrically in real-time.

Results: Pedal ganglia exhibit basal NO release (1 nM range). Inhibition of basal NO release by L-NAME results in greater numbers of microglia in the incubation medium. This process appears to involve two phases of egress. The first involves a slow egress of microglia, whereas the second, occurring 18 hours later, involves a more rapid release of these cells. Low levels of the NO donor SNAP (1 nM) does not interrupt microglial egress, whereas in the presence of L-NAME it does. Exposing the ganglia to high NO levels for a short period of time inhibits their egress.

Conclusions: Spontaneous ganglionic NO release maintains/stabilizes microglia juxtaposed to neurons. Excised ganglia at the various observation periods reveals a transition of constitutive nitric oxide synthase (NOS) to inducible NOS derived NO. It also appears that the microglia in some unknown manner become insensitive to iNOS derived NO since they exhibit enhanced migration during this last phase of the ganglionic NO response. Taken together, NO is involved with regulating microglial activation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nitric oxide
16
pedal ganglia
12
microglial activation
8
microglia juxtaposed
8
excised pedal
8
basal release
8
microglia
7
release
5
ganglia
5
nitric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!