In this study, we investigated whether carbofuran, a commonly used carbamate pesticide, and N-nitrosocarbofuran (NOCF), the N-nitroso metabolite of carbofuran, have cytotoxicity in mouse brain microvascular endothelial cells (bEnd.3). Results from the MTT assay in bEnd.3 cells showed that NOCF but not carbofuran caused a remarkable decrease in cell viability. The cell death induced by NOCF appeared to involve apoptosis, based on our results from annexin V staining and electron microscopy. To investigate the mechanism of the NOCF-induced cell death, we examined the effects of selective inhibitors for MAP kinase pathways, PD98059 (for MEK/ERK), SB202190 (for p38 MAP kinase), and SP600125 (for JNK), on the NOCF-induced cell death. The NOCF-induced cell death was significantly reduced by PD98059, but not by SB202190 or SP600125. NOCF increased ERK phosphorylation as early as 15 min after the treatment and this increase was maintained for 2 h. In summary, our results suggest that NOCF can induce apoptotic cell death, at least in part, through the ERK pathway in brain microvascular endothelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1254/jphs.93.489DOI Listing

Publication Analysis

Top Keywords

cell death
20
brain microvascular
12
microvascular endothelial
12
endothelial cells
12
nocf-induced cell
12
mouse brain
8
cells bend3
8
map kinase
8
cell
6
nocf
5

Similar Publications

Cancer is one of the leading causes of death worldwide. In recent years, immune checkpoint inhibitor therapies, in addition to standard immuno- or chemotherapy and surgical approaches, have massively improved the outcome for cancer patients. However, these therapies have their limitations and improved strategies, including access to reliable cancer vaccines, are needed.

View Article and Find Full Text PDF

Background: : The metabolic by-product butyric acid of Gram-negative anaerobic bacteria can invoke pathological effects on periodontal cells resulting in inflammation and further destruction of periodontium. However, limited researches on the effects of butyric acid on cementoblasts were reported. Therefore, this study aimed to investigate the type of cell death in murine cementoblast (OCCM.

View Article and Find Full Text PDF

Spatial multi-omics characterizes GPR35-relevant lipid metabolism signatures across liver zonation in MASLD.

Life Metab

December 2024

Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a metabolic disease that can progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and cancer. The zonal distribution of biomolecules in the liver is implicated in mediating the disease progression. Recently, G-protein-coupled receptor 35 (GPR35) has been highlighted to play a role in MASLD, but the precise mechanism is not fully understood, particularly, in a liver-zonal manner.

View Article and Find Full Text PDF

Introduction: Intranasal (IN) deferoxamine (DFO) has emerged over the past decade as a promising therapeutic in preclinical experiments across neurodegenerative and neurovascular diseases. As an antioxidant iron chelator, its mechanisms are multimodal, involving the binding of brain iron and the consequent engagement of several pathways to counter pathogenesis across multiple diseases. We and other research groups have shown that IN DFO rescues cognitive impairment in several rodent models of Alzheimer Disease (AD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!