Xanthomonas campestris is a Gram-negative bacterium that produces an exopolysaccharide known as xanthan gum. Xanthan is involved in a variety of biological functions, including pathogenesis, and is widely used in the industry as thickener and viscosifier. Although the genetics and biosynthetic process of xanthan are well documented, the enzymatic components have not been examined and no data on glycosyltransferases have been reported. We describe the functional characterization of the gumK gene product, an essential protein for xanthan synthesis. Immunoblots and complementation studies showed that GumK is a 44-kDa protein associated to the membrane fraction. This value corresponds to the expected molecular mass for GumK encoded by an extended open reading frame than proposed from previous genetic data and in X. campestris published complete genome. The protein was expressed in Escherichia coli cells. The purified protein catalyzed the transfer of a glucuronic acid residue from UDP-glucuronic acid to mannose-alpha-1,3-glucose-beta-1,4-glucose-P-P-polyisoprenyl with formation of a glucuronic acid-beta-mannose linkage. We examined the acceptor substrate specificity. GumK was unable to use the trisaccharide acceptor freed from the pyrophosphate lipid moiety. Replacement of the natural lipid moiety by phytanyl showed that the catalytic function could proceed with glucuronic acid transfer. These results suggest the enzyme does not show specificity for the lipidic portion of the acceptor. GumK showed diminished activity when tested with 6-O-acetyl-mannose-alpha-1,3-glucose-beta-1,4-glucose-P-P-polyisoprenyl, a putative intermediate in the synthesis of xanthan. This could indicate that acetylation of the internal mannose takes place after the formation of the GumK product.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwh056DOI Listing

Publication Analysis

Top Keywords

functional characterization
8
characterization gumk
8
xanthomonas campestris
8
glucuronic acid
8
lipid moiety
8
gumk
7
xanthan
6
gumk membrane-associated
4
membrane-associated beta-glucuronosyltransferase
4
beta-glucuronosyltransferase xanthomonas
4

Similar Publications

Synergistic effects of GmLFYa and GmLFYb on Compound Leaf Development in Soybean.

Physiol Plant

January 2025

School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Legume leaves exhibit diverse compound forms, with various regulatory mechanisms underlying the development. The transcription factor-encoding KNOXI genes are required to promote leaflet initiation in most compound-leafed angiosperms. In non-IRLC (inverted repeat-lacking clade) legumes, KNOXI are expressed in compound leaf primordia but not in others (IRLC).

View Article and Find Full Text PDF

Pharmaceuticals removal from aqueous solution by water hyacinth (Eichhornia crassipes): a comprehensive investigation of kinetics, equilibrium, and thermodynamics.

Environ Sci Pollut Res Int

January 2025

Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia.

This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g.

View Article and Find Full Text PDF

Background: Concurrent exercise (CE), an emerging exercise modality characterized by sequential bouts of aerobic (AE) and resistance exercise (RE), has demonstrated acute benefits on executive functions (EFs) and neuroelectric P3 amplitude. However, the effect of acute CE on inhibitory control, a sub-component of EFs, and P3 amplitude remains inconclusive. Moreover, exploring the mechanisms underlying the effects of acute exercise on EFs contributes to scientific comprehension, with lactate recognized as a crucial candidate positively correlated with EFs.

View Article and Find Full Text PDF

Biochemical evidence for the diversity of LHCI proteins in PSI-LHCI from the red alga Galdieria sulphuraria NIES-3638.

Photosynth Res

January 2025

Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.

Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation.

View Article and Find Full Text PDF

The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!