Osteoclast-mediated bone matrix resorption has been attributed to cathepsin K, a cysteine protease of the papain family that is abundantly and selectively expressed in osteoclast. Inhibition of cathepsin K could potentially be an effective method to prevent osteoporosis. Structure-activity studies on a series of reversible ketoamides based inhibitors of cathepsin K have led to identification of potent and selective compounds. Crystallographic studies have given insights into the mode of binding of these inhibitors. A series of ketoamides with varying P1 moieties were first synthesized to find an optimum group that would fit into the S1 subsite of the cysteine protease, cathepsin K. With a desired P1 group in place a variety of heterocyclic analogues in the P' region were synthesized to study their steric and electronic effects. In the process of exploring these P' heterocyclic variations, excellent selectivity was gained over other highly homologous cysteine proteases, including cathepsins L, S, and V. The favorable pharmacokinetic properties of some of these cathepsin K inhibitors in rats make them suitable for evaluation in rodent osteoporosis models. A representative cathepsin K inhibitor was shown to attenuate PTH-stimulated hypercalcemia in the TPTX rat model. These inhibitors provide a viable lead series in the discovery of new therapies for the prevention and treatment of osteoporosis
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm030373l | DOI Listing |
Front Immunol
December 2024
Department of General Surgery, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China.
Hepatocellular carcinoma (HCC) represents the most prevalent form of primary liver cancer and has a high mortality rate. Caspase-8 plays a pivotal role in an array of cellular signaling pathways and is essential for the governance of programmed cell death mechanisms, inflammatory responses, and the dynamics of the tumor microenvironment. Dysregulation of caspase-8 is intricately linked to the complex biological underpinnings of HCC.
View Article and Find Full Text PDFDiscov Med
December 2024
Department of Breast Surgery, Jiujiang Maternal and Child Health Hospital, 332000 Jiujiang, Jiangxi, China.
Background: The tumor suppressor wild-type p53 is known for its role in inducing apoptosis in tumor cells. This study investigated the relationship between wild-type p53 and protein phosphatase 1 (PP1) and caspase in promoting apoptosis of breast cancer cells.
Methods: Human breast cancer cell lines MCF-7 and MDA-MB-231 obtained from the American Type Culture Collection were used in this study.
J Biomater Sci Polym Ed
December 2024
Department of Chemistry, Chaudhary Bansi Lal University, Bhiwani, Haryana, India.
Novel trans-2,3-dihydrofuro[3,2-c]coumarins were synthesized and assessed for their inhibition potential against cysteine proteases: cathepsin B, H and L which are the possible targets for anticancer activity. In general, the coumarin derivatives were found to be exceptional inhibitors against this class of enzymes. On the basis of molecular modeling data and structure-activity relationships, their inhibition patterns are also discussed.
View Article and Find Full Text PDFJ Dent Res
December 2024
The ADA Forsyth Institute Inc., Cambridge, MA, USA.
Tooth enamel maturation requires the removal of proteins from the mineralizing enamel matrix to allow for crystallite growth until full hardness is reached to meet the mechanical needs of mastication. While this process takes up to several years in humans before the tooth erupts, it is greatly accelerated in the faster-developing pigs. Pig teeth erupt with softer, protein-rich enamel that is similar to hypomineralized human enamel but continues to harden quickly after eruption.
View Article and Find Full Text PDFMol Genet Genomics
December 2024
Department of Cardiovascular Medicne, The Second Affiliated Hospital of Nanchang University, No.1 Minde Road, Nanchang, 330006, P.R. China.
Our study examined the relationships and interactions among 30 genes related to the NOD-like receptor protein 3 (NLRP3) inflammasome. We identified 368 interconnections between these 30 genes, with NLRP3 participating in 38 interactions. The potential roles of these genes in atherosclerosis were evaluated based on protein-protein interaction networks and coexpression analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!