Background: High-altitude hypoxia may induce oxidative stress in humans. However, the effect of acute, severe, and non-acclimatized short-term hypobaric hypoxia exposure in humans has not been described. Additionally, little is known regarding the confounding role of reoxygenation in the extent of oxidative stress and damage markers in hypoxia. Our goals were to analyze the effect of of hypobaric hypoxia and reoxygenation on plasma oxidative stress and oxidative damage.

Methods: There were six male volunteers exposed to a simulated altitude of 5500 m (52.52 kPa) in the INEFC-UB hypobaric chamber over 4 h and returned to sea level (SL) in 30 min. Data were collected at baseline SL at 1 h and 4 h of hypoxia at 5500 m and immediately after return to sea level (RSL).

Results: Elevated scores of acute mountain sickness (13) and significant changes in arterial oxygen saturation (97.5 +/- 0.5; 53.3 +/- 1.9; 97.1 +/- 0.3%, p < 0.05 at SL, 4 h, and RSL, respectively) were observed. Significant reductions (p < 0.05) on total glutathione (TGSH) content were measured from SL and 1 h vs. 4 h and RSL. The percentage of oxidized glutathione (%GSSG) as an indicator of redox oxidative changes increased significantly (SL vs. 1 h; 1 h vs. 4 h, and RSL). Lipid peroxidation (TBARS), protein oxidation (SH protein groups), and total antioxidant status (TAS) followed the redox changes suggested by the glutathione system throughout the protocol.

Conclusions: Hypobaric hypoxia increased the burden of plasma oxidative stress and damage markers all through the hypoxia period. However, no additional changes were observed with reoxygenation at the end of the reoxygenation period.

Download full-text PDF

Source

Publication Analysis

Top Keywords

oxidative stress
20
hypobaric hypoxia
12
stress humans
8
hypoxia
8
simulated altitude
8
altitude 5500
8
stress damage
8
damage markers
8
markers hypoxia
8
plasma oxidative
8

Similar Publications

This prospective observational study aimed to compare abdominal hysterectomy (AH), vaginal hysterectomy (VH), and total laparoscopic hysterectomy (TLH) in terms of oxidative stress (OS) by measuring serum levels of total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI). Of the 3 groups, namely, AH, VH, and TLH, 22 patients were enrolled in each to investigate the aim of the study mentioned above. Patient demographics, clinical and surgical characteristics, and preoperative and postoperative (0th and 24th hours) serum TAS, TOS, and OSI levels were investigated.

View Article and Find Full Text PDF

Objective: The pathophysiology of delayed cerebral ischemia (DCI) is not fully elucidated. The lack of accurate diagnostic tools increases the probability of delayed diagnosis and timely treatment. The authors assessed the relationship of 8-iso-prostaglandin F2α (F2-IsoP) and oxidative stress biomarkers, nitric oxide synthase 3 (NOS3) and nicotinamide adenine dinucleotide phosphate (NADPH), with DCI after aneurysmal subarachnoid hemorrhage (aSAH).

View Article and Find Full Text PDF

20% acute pancreatitis (AP) develops into severe AP (SAP), a global health crisis, with an increased mortality rate to 30%-50%. Mitochondrial damage and immune disorders are direct factors, which exacerbate the occurrence and progression of AP. So far, mitochondrial and immunity injury in SAP remains largely elusive, with no established treatment options available.

View Article and Find Full Text PDF

Cryo-EM structure and regulation of human NAD kinase.

Sci Adv

January 2025

Atelier de Biologie Chimie Informatique Structurale, Centre de Biologie Structurale, Univ Montpellier, CNRS, INSERM, 29 rue de Navacelles, 34090 Montpellier, France.

Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a crucial reducing cofactor for reductive biosynthesis and protection from oxidative stress. To fulfill their heightened anabolic and reductive power demands, cancer cells must boost their NADPH production. Progrowth and mitogenic protein kinases promote the activity of cytosolic NAD kinase (NADK), which produces NADP, a limiting NADPH precursor.

View Article and Find Full Text PDF

Circadian rhythm disruption, commonly caused by factors such as jet lag and shift work, is increasingly recognized as a critical factor impairing wound healing. Although melatonin is known to regulate circadian rhythms and has potential in wound repair, its clinical application is limited by low bioavailability. To address these challenges, we developed an alginate-based dual-network hydrogel as a delivery system for melatonin, ensuring its stable and sustained release at the wound site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!