Effect of a sunflower oil-supplemented diet on protein kinase activities of rat liver plasma membranes.

Int J Biochem

Central Laboratory of Biophysics, Bulgarian Academy of Sciences, Sofia.

Published: December 1992

1. The effect of a sunflower oil-enriched diet on plasma membrane-bound protein kinase C, protein kinase A, casein and tyrosine kinase activities was studied. 2. The diet induced an increase in the content of linoleic acid and a decrease in the content of palmitic acid. The anisotropy parameter (rs) of the fluorescence probe DPH and SDPH decreased strongly in the experimental group. 3. Protein kinase C was stimulated more than two times. Tyrosine kinase, protein kinase A and casein kinase activities were increased by 65, 57 and 40%, respectively. 4. We suggest that a more fluid lipid environment favours higher plasma membrane-bound protein kinase activities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0020-711x(92)90291-8DOI Listing

Publication Analysis

Top Keywords

protein kinase
24
kinase activities
16
kinase
9
plasma membrane-bound
8
membrane-bound protein
8
kinase protein
8
kinase casein
8
tyrosine kinase
8
protein
6
sunflower oil-supplemented
4

Similar Publications

Purpose: Precision medicine plays an important role in the treatment of patients with advanced melanoma. Despite its high incidence in White patients, advanced melanoma is rare in Asian countries, hampering prospective clinical trials targeting the Asian population. This retrospective study aimed to elucidate the real-world molecular diagnoses and outcomes of Japanese patients with melanoma using comprehensive genome profiling (CGP).

View Article and Find Full Text PDF

Purpose: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have shown promise in treating -amplified metastatic colorectal cancer (mCRC). Identifying optimal biomarkers for treatment decisions remains challenging. This study explores the potential of artificial intelligence (AI) in predicting treatment responses to trastuzumab plus pertuzumab (TP) in patients with -amplified mCRC from the phase II TRIUMPH trial.

View Article and Find Full Text PDF

Background And Objectives: Breast cancers (BCs) of patients with paraneoplastic neurologic syndromes and anti-Yo antibodies (Yo-PNS) overexpress human epidermal growth factor receptor 2 (HER2) and display genetic alterations and overexpression of the Yo-onconeural antigens. They are infiltrated by an unusual proportion of B cells. We investigated whether these features were also observed in patients with PNS and anti-Ri antibodies (Ri-PNS).

View Article and Find Full Text PDF

Background: Shenfu injection (SFI), derived from a traditional Chinese medicine (TCM) prescription, is an effective drug for the treatment of sepsis-induced myocardial injury (SIMI) with good efficacy, but its exact therapeutic mechanism remains unclear.

Methods: SwissTargetPrediction and GeneCards database were used to obtain relevant targets for SFI and SIMI. STRING 11.

View Article and Find Full Text PDF

FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways.

PLoS One

January 2025

Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China.

FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!