The first 1000 dendritic cell vaccinees.

Cancer Invest

Lineberry Research Associates, P.O. Box 14626, Research Triangle Park, 79 T.W. Alexander Drive, #4401, North Carolina 27709, USA.

Published: February 2004

Dendritic cells (DCs) are potent antigen-presenting cells that have the ability to stimulate primary T cell antitumor immune responses in animals and humans. Since the first published clinical trial of dendritic cell vaccination in 1995, 98 studies describing more than 1000 vaccinees have been published in peer-reviewed medical journals or presented at the annual meetings of the American Society for Clinical Oncology, the American Association of Cancer Research, or the American Society of Hematology. Trials have been performed in 15 countries. Trials included patients with more than two dozen tumor types; most trials studied patients with malignant melanoma, prostate cancer, colorectal carcinoma, or multiple myeloma, using autologous DCs pulsed with synthetic antigens or idiotype antibodies. The DC vaccines were also prepared by pulsing DCs with tumor lysates or RNA, by transfection with tumor DNA, or by creating tumor cell/DC fusions. Various approaches to vaccine cell numbers, length of vaccine program, site of vaccination, frozen preservation of vaccine, and use of a maturations step for DCs were used. Adverse effects associated with DC vaccination were uncommon; most were mild and self-limited and none were serious. Clinical responses were observed in approximately half the trials. The DC vaccination may provide a safe approach to cancer immunotherapy that can overcome the limited reach and immunogenicity of peptide vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1081/cnv-120025091DOI Listing

Publication Analysis

Top Keywords

dendritic cell
8
american society
8
1000 dendritic
4
cell
4
cell vaccinees
4
vaccinees dendritic
4
dendritic cells
4
dcs
4
cells dcs
4
dcs potent
4

Similar Publications

Direction selectivity is a fundamental feature in the visual system. In the retina, direction selectivity is independently computed by ON and OFF circuits. However, the advantages of extracting directional information from these two independent circuits are unclear.

View Article and Find Full Text PDF

Immunity suffers a function deficit during aging, and the incidence of cancer is increased in the elderly. However, most cancer models employ young mice, which are poorly representative of adult cancer patients. We have previously reported that Triple-Therapy (TT), involving antigen-presenting-cell activation by vinorelbine and generation of TCF1-stem-cell-like T cells (scTs) by cyclophosphamide significantly improved anti-PD-1 efficacy in anti-PD1-resistant models like Triple-Negative Breast Cancer (TNBC) and Non-Hodgkin's Lymphoma (NHL), due to T-cell-mediated tumor killing.

View Article and Find Full Text PDF

MCT1 lactate transporter blockade re-invigorates anti-tumor immunity through metabolic rewiring of dendritic cells in melanoma.

Nat Commun

January 2025

Institute for Advanced Biosciences, Team: Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Inserm U 1209, CNRS UMR 5309, Univ. Grenoble Alpes, Grenoble, France.

Dendritic cells (DC) are key players in antitumor immune responses. Tumors exploit their plasticity to escape immune control; their aberrant surface carbohydrate patterns (e.g.

View Article and Find Full Text PDF

Background: Cholangiocarcinoma is a challenging malignancy with limited responses to conventional therapies, particularly immune checkpoint inhibitor therapy. Tumor-infiltrating lymphocytes (TILs) and tertiary lymphoid structures (TLSs) are key components of the tumor microenvironment (TME) and have been implicated in the immune response to cancer. However, the role and difference of TLSs and TILs in patients with cholangiocarcinoma remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!