Corona discharge influences ozone concentrations near rats.

Bioelectromagnetics

Battelle, Pacific Northwest Laboratory, Richland, Washington 99352, USA.

Published: February 2004

Ozone can be produced by corona discharge either in dry air or when one electrode is submerged in water. Since ozone is toxic, we examined whether ozone production by corona near laboratory animals could reach levels of concern. Male rats were exposed to a corona discharge and the concentration of ozone produced was measured. The resulting concentration of ozone ranged from ambient levels to 250 ppb when animals were located 1 cm from a 10 kV source. Similar ozone concentrations were observed when a grounded water source was present. Possible explanations for, as well as concerns regarding, ozone production under these conditions are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bem.10161DOI Listing

Publication Analysis

Top Keywords

corona discharge
12
ozone
8
ozone concentrations
8
ozone produced
8
ozone production
8
concentration ozone
8
corona
4
discharge influences
4
influences ozone
4
concentrations rats
4

Similar Publications

With the demand for high-safety, high-integration, and lightweight micro- and nano-electronic components, an MEMS electromagnetic energy-releasing component was innovatively designed based on the corona discharge theory. The device subverted the traditional device-level protection method for electromagnetic energy, realizing the innovation of adding a complex circuit system to the integrated chip through micro-nanometer processing technology and enhancing the chip's size from the centimeter level to the micron level. In this paper, the working performance of the MEMS electromagnetic energy-releasing component was verified through a combination of a simulation, a static experiment, and a dynamic test, and a characterization test of the tested MEMS electromagnetic energy-releasing component was carried out to thoroughly analyze the effect of the MEMS electromagnetic energy-releasing component.

View Article and Find Full Text PDF

Interface-engineered non-volatile visible-blind photodetector for in-sensor computing.

Nat Commun

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.

Ultraviolet (UV) detection is extensively used in a variety of applications. However, the storage and processing of information after detection require multiple components, resulting in increased energy consumption and data transmission latency. In this paper, a reconfigurable UV photodetector based on CeO/SrTiO heterostructures is demonstrated with in-sensor computing capabilities achieved through interface engineering.

View Article and Find Full Text PDF

Cold atmospheric pressure plasma (CAPP) comprises an ensemble of ionized gas, neutral particles, and/or reactive species. Electricity is frequently used to produce CAPP via a variety of techniques, including plasma jets, corona discharges, dielectric barrier discharges, and glow discharges. The type and flow rates of the carrier gas(es), temperature, pressure, and vacuum can all be altered to control the desired properties of the CAPP.

View Article and Find Full Text PDF

Eradication of single- and mixed-species biofilms of P. aeruginosa and S. aureus by pulsed streamer corona discharge cold atmospheric plasma.

Sci Total Environ

December 2024

Division of Environmental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia.

Cold atmospheric plasma has recently gained much attention due to its antimicrobial effects. Among others, plasma has proven its potential to combat microbial biofilms. Yet, knowledge of complex network interactions between individual microbial species in natural infection environments of the biofilm as well as plasma-biofilm inactivation pathways is limited.

View Article and Find Full Text PDF

Rapid diagnosis of cerebrospinal fluid (CSF) leaks is critical as endoscopic endonasal skull base surgery gains global prominence. Current clinical methods such as endoscopic examination with and without intrathecal injection of fluorescent dye are invasive and rely on subjective judgment by physicians, highlighting the clinical need for label-free point-of-care (POC). However, a viable solution remains undeveloped due to the molecular complexity of CSF rhinorrhea mixed with nasal discharge and the scarcity of specific biomarkers, delaying sensor development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!