Regulation of blood-testis barrier dynamics: an in vivo study.

J Cell Sci

Population Council, Center for Biomedical Research, 1230 York Avenue, New York, NY 10021, USA.

Published: February 2004

AI Article Synopsis

  • The study used an in vivo model to explore how CdCl(2) affects tight junction dynamics in the testis, revealing that it disrupts the blood-testis barrier (BTB) through TGF-beta2 and TGF-beta3 involvement.
  • The disruption was linked to changes in key proteins, occludin and ZO-1, and was mediated via the p38 MAP kinase signaling pathway.
  • Additionally, the research indicated that the loss of cell adhesion at adherens junctions coincided with an increase in alpha(2)-macroglobulin, which might help protect the seminiferous epithelium during this disruption.

Article Abstract

An in vivo model was used to investigate the regulation of tight junction (TJ) dynamics in the testis when adult rats were treated with CdCl(2). It was shown that the CdCl(2)-induced disruption of the blood-testis barrier (BTB) associated with a transient induction in testicular TGF-beta2 and TGF-beta3 (but not TGF-beta1) and the phosphorylated p38 mitogen activated protein (MAP) kinase, concomitant with a loss of occludin and zonula occludens-1 (ZO-1) from the BTB site in the seminiferous epithelium. These results suggest that BTB dynamics in vivo are regulated by TGF-beta2/-beta3 via the p38 MAP kinase pathway. Indeed, SB202190, a specific p38 MAP kinase inhibitor, blocked the CdCl(2)-induced occludin and ZO-1 loss from the BTB. This result clearly illustrates that CdCl(2) mediates its BTB disruptive effects via the TGF-beta3/p38 MAP kinase signaling pathway. Besides, this CdCl(2)-induced occludin and ZO-1 loss from the BTB also associated with a significant loss of the cadherin/catenin and the nectin/afadin protein complexes at the site of cell-cell actin-based adherens junctions (AJs). An induction of alpha(2)-macroglobulin (a non-specific protease inhibitor) was also observed during BTB damage and when the seminiferous epithelium was being depleted of germ cells. These data illustrate that a primary disruption of the BTB can lead to a secondary loss of cell adhesion function at the site of AJs, concomitant with an induction in protease inhibitor, which apparently is used to protect the epithelium from unwanted proteolysis. alpha(2)-Macroglobulin was also shown to associate physically with TGF-beta3, afadin and nectin 3, but not occludin, E-cadherin or N-cadherin, indicating its possible role in junction restructuring in vivo. Additionally, the use of SB202190 to block the TGF-beta3/p-38 MAP kinase pathway also prevented the CdCl(2)-induced loss of cadherin/catenin and nectin/afadin protein complexes from the AJ sites, yet it had no apparent effect on alpha(2)-macroglobulin. These results demonstrate for the first time that the TGF-beta3/p38 MAP kinase signaling pathway is being used to regulate both TJ and AJ dynamics in the testis, mediated by the effects of TGF-beta3 on TJ- and AJ-integral membrane proteins and adaptors, but not protease inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.00900DOI Listing

Publication Analysis

Top Keywords

map kinase
24
blood-testis barrier
8
dynamics vivo
8
dynamics testis
8
btb
8
btb associated
8
seminiferous epithelium
8
p38 map
8
kinase pathway
8
cdcl2-induced occludin
8

Similar Publications

Cadmium is a non-essential element and neurotoxin that causes neuroinflammation, which leads to neurodegenerative diseases and brain cancer. To date, there are no specific or effective therapeutic agents to control inflammation and alleviate cadmium-induced progressive destruction of brain cells. Fluoroquinolones (FQs), widely used antimicrobials with effective blood-brain barrier penetration, show promise in being repurposed as anti-inflammatory drugs.

View Article and Find Full Text PDF

Identities of functional pSer/Thr.Pro protein substrates of the PIN1 prolyl isomerase and its effects on downstream signaling in bladder carcinogenesis remain largely unknown. Phenotypically, we found that PIN1 positively regulated bladder cancer cell proliferation, cell motility and urothelium clearance capacity in vitro and controlled tumor growth and potential metastasis in vivo.

View Article and Find Full Text PDF

Low-grade gliomas and reactive piloid gliosis can present with overlapping features on conventional histology. Given the large implications for patient treatment, there is a need for effective methods to discriminate these morphologically similar but clinically distinct entities. Using routinely available stains, we hypothesize that a limited panel including SOX10, p16, and cyclin D1 may be useful in differentiating mitogen-activated protein (MAP) kinase-activated low-grade gliomas from piloid gliosis.

View Article and Find Full Text PDF

Background: Epstein-Barr virus-associated gastric cancer (EBVaGC) is characterized by higher lymphocytic infiltration, which predicts sensitivity to immunotherapy. However, there are few studies investigating the mechanisms of acquired resistance to programmed cell death protein 1 (PD-1) blockade and its subsequent treatment strategies for EBVaGC.

Case Description: We describe the case of a patient with EBVaGC who was initially treated with first-line chemotherapy plus Sintilimab, a fully humanized anti-PD-1 monoclonal antibody, resulting in a near-complete response.

View Article and Find Full Text PDF

The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!