A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surveillance of medical device-related hazards and adverse events in hospitalized patients. | LitMetric

Context: Although adverse drug events have been extensively evaluated by computer-based surveillance, medical device errors have no comparable surveillance techniques.

Objectives: To determine whether computer-based surveillance can reliably identify medical device-related hazards (no known harm to patient) and adverse medical device events (AMDEs; patient experienced harm) and to compare alternative methods of detection of device-related problems.

Design, Setting, And Participants: This descriptive study was conducted from January through September 2000 at a 520-bed tertiary teaching institution in the United States with experience in using computer tools to detect and prevent adverse drug events. All 20 441 regular and short-stay patients (excluding obstetric and newborn patients) were included.

Main Outcome Measures: Medical device events as detected by computer-based flags, telemetry problem checklists, International Classification of Diseases, Ninth Revision (ICD-9) discharge code (which could include AMDEs present at admission), clinical engineering work logs, and patient survey results were compared with each other and with routine voluntary incident reports to determine frequencies, proportions, positive predictive values, and incidence rates by each technique.

Results: Of the 7059 flags triggered, 552 (7.8%) indicate a device-related hazard or AMDE. The estimated 9-month incidence rates (number per 1000 admissions [95% confidence intervals]) for AMDEs were 1.6 (0.9-2.5) for incident reports, 27.7 (24.9-30.7) for computer flags, and 64.6 (60.4-69.1) for ICD-9 discharge codes. Few of these events were detected by more than 1 surveillance method, giving an overall incidence of AMDE detected by at least 1 of these methods of 83.7 per 1000 (95% confidence interval, 78.8-88.6) admissions. The positive predictive value of computer flags for detecting device-related hazards and AMDEs ranged from 0% to 38%.

Conclusions: More intensive surveillance methods yielded higher rates of medical device problems than found with traditional voluntary reporting, with little overlap between methods. Several detection methods had low efficiency in detecting AMDEs. The high rate of AMDEs suggests that AMDEs are an important patient safety issue, but additional research is necessary to identify optimal AMDE detection strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1001/jama.291.3.325DOI Listing

Publication Analysis

Top Keywords

medical device
16
device-related hazards
12
surveillance medical
8
medical device-related
8
adverse drug
8
drug events
8
computer-based surveillance
8
device events
8
amdes patient
8
methods detection
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!