Proteinacious intracellular aggregates in motor neurons are a key feature of both sporadic and familial amyotrophic lateral sclerosis (ALS). These inclusion bodies are often immunoreactive for Cu,Zn-superoxide dismutase (SOD1) and are implicated in the pathology of ALS. On the basis of this and a similar clinical presentation of symptoms in the familial (fALS) and sporadic forms of ALS, we sought to investigate the possibility that there exists a common disease-related aggregation pathway for fALS-associated mutant SODs and wild type SOD1. We have previously shown that oxidation of fALS-associated mutant SODs produces aggregates that have the same morphological, structural, and tinctorial features as those found in SOD1 inclusion bodies in ALS. Here, we show that oxidative damage of wild type SOD at physiological concentrations ( approximately 40 microm) results in destabilization and aggregation in vitro. Oxidation of either mutant or wild type SOD1 causes the enzyme to dissociate to monomers prior to aggregation. Only small changes in secondary and tertiary structure are associated with monomer formation. These results indicate a common aggregation prone monomeric intermediate for wild type and fALS-associated mutant SODs and provides a link between sporadic and familial ALS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M313295200 | DOI Listing |
Circ Res
January 2025
Burke Neurological Institute, White Plains, NY (H.J., I.P., K.W.P., J.M., A.M., S.C.).
Background: Remote ischemic conditioning (RIC) has been implicated in cross-organ protection in cerebrovascular disease, including stroke. However, the lack of a consensus protocol and controversy over the clinical therapeutic outcomes of RIC suggest an inadequate mechanistic understanding of RIC. The current study identifies RIC-induced molecular and cellular events in the blood, which enhance long-term functional recovery in experimental cerebral ischemia.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany.
Interactions of polyelectrolytes (PEs) with proteins play a crucial role in numerous biological processes, such as the internalization of virus particles into host cells. Although docking, machine learning methods, and molecular dynamics (MD) simulations are utilized to estimate binding poses and binding free energies of small-molecule drugs to proteins, quantitative prediction of the binding thermodynamics of PE-based drugs presents a significant obstacle in computer-aided drug design. This is due to the sluggish dynamics of PEs caused by their size and strong charge-charge correlations.
View Article and Find Full Text PDFChem Sci
January 2025
Université de Lorraine, CNRS, IMoPA F-54000 Nancy France
The polyketide specialized metabolites of bacteria are attractive targets for generating analogues, with the goal of improving their pharmaceutical properties. Here, we aimed to produce C-26 derivatives of the giant anti-cancer stambomycin macrolides using a mutasynthesis approach, as this position has been shown previously to directly impact bioactivity. For this, we leveraged the intrinsically broad specificity of the acyl transferase domain (AT) of the modular polyketide synthase (PKS), which is responsible for the alkyl branching functionality at this position.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, China.
Introduction: Brucellosis, a significant zoonotic infectious disease, poses a global health threat. Accurate and efficient diagnosis is crucial for prevention, control, and treatment of brucellosis. VirB proteins, components of the Type IV secretion system (T4SS) in , play a pivotal role in bacterial virulence and pathogenesis but have been understudied for their diagnostic potential.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University Rama VI Road Bangkok 10400 Thailand
Two series of indolo[1,2-]quinolines (IQs), comprising six 6-trifluoromethylthio indolo[1,2-]quinolines and nine 6-arenesulfonyl indolo[1,2-]quinolines, were screened for their inhibitory activity against EGFR tyrosine kinase (EGFR-TK) using the ADP-Glo™ kinase assay. Among the 15 IQs screened, four compounds exhibited cytotoxic activity against a lung cancer cell line (A549) that was as potent as the known drug afatinib with lower cytotoxicity in Vero cells. In addition, while they displayed cytotoxic activity against a head and neck squamous cell carcinoma cell line (SCC cells), they were inactive against a colorectal cancer cell line (LS174T cells).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!