We examined the effects of heterologous expression of the open reading frames (ORF) of two genes on salt tolerance and glycerol production in a Saccharomyces cerevisiae strain deficient in glycerol synthesis (gpd1Deltagpd2Delta). When the ORF of the Zygosaccharomyces rouxii glycerol 3-phosphate dehydrogenase gene (ZrGPD1) was expressed under the control of the GAL10 promoter, salt tolerance and glycerol production increased; when the ORF of the glycerol dehydrogenase gene (ZrGCY1) was expressed under the control of the GAL1 promoter, no such changes were observed. Zrgcy1p had a weak effect on glycerol production. These results suggest that Zrgpd1p is the primary enzyme involved in Z. rouxii glycerol production, following a mechanism similar to that of S. cerevisiae (Gpd1p). When the ORFs of the S. cerevisiae glycerol 3-phosphatase gene (GPP2) and ZrGPD1 were simultaneously expressed, glycerol production increased, compared with that in yeast expressing only ZrGPD1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1567-1356(03)00210-1 | DOI Listing |
Nanoscale
January 2025
School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China.
Despite the potential to significantly enhance the economic viability of biomass-based platforms through the selective conversion of glycerol to 1,3-dihydroxyacetone (DHA), a formidable challenge persists in simultaneously achieving high catalytic activity and stability along this reaction pathway. Herein, we have devised a strategic approach to manipulate the interfacial integration within composite catalysts to address the performance trade-off. Through the modulation of the composite process involving a bio-templated porous ZSM-5 zeolite platform (bZ) and an Au/CuZnO catalyst, three distinct interfacial bonding modes were achieved: physical milling, encapsulation by zeolite, and growth on zeolite.
View Article and Find Full Text PDFSmall
January 2025
School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
Solar hydrogen production using photoelectrochemical (PEC) cells requires the selection of cost-effective materials with high photoactivity and durability. CuBiO photocathodes possess an appropriate bandgap for efficient hydrogen production. However, their performance is limited by poor charge transport and interface voids formed due to the porous structure during annealing, which complicates the deposition of passivation overlayers.
View Article and Find Full Text PDFAm J Case Rep
January 2025
Department of Neonatology, The First Division Hospital of Xinjiang Production and Construction Corps, Akesu, Xinjiang, China.
BACKGROUND Ureaplasma urealyticum (UU) is a common microorganism that has been associated with a variety of obstetric and neonatal complications, such as infertility, stillbirth, histologic chorioamnionitis, neonatal sepsis, respiratory infections, and central nervous system infections. However, it is rare for it to cause severe neonatal asphyxia. This rarity is the focus of our case report, which aims to highlight the potential severity of UU infections in newborns.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata 940-2188, Japan; Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata 940-2188, Japan.
Anaerobic treatment of tapioca wastewater has a long processing time. This study aims to evaluate ethanol fermentation as an effective treatment of tapioca wastewater. Simulated tapioca wastewater with an average chemical oxygen demand (COD) of 6900 mg L was treated in a four-column anaerobic baffled reactor for 300 d.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.
Light-driven CO biovalorization offers a promising route for coupling carbon mitigation with petrochemical replacement. Synthetic phototrophic communities that mimic lichens can reduce the metabolic burden with improved CO utilization. However, inefficient channeling of carbon and energy between species seriously hinders the collaborative CO-to-molecule route.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!