While S4 is known as the voltage sensor in voltage-gated potassium channels, the carboxyl terminus of S3 (S3C) is of particular interest concerning the site for gating modifier toxins like hanatoxin. The thus derived helical secondary structural arrangement for S3C, as well as its surrounding environment, has since been intensively and vigorously debated. Our previous structural analysis based on molecular simulation has provided sufficient information to describe reasonable docking conformation and further experimental designs (Lou et al., 2002. J. Mol. Recognit. 15: 175-179). However, if one only relies on such information, more advanced structure-functional interpretations for the roles S3C may play in the modification of gating behavior upon toxin binding will remain unknown. In order to have better understanding of the molecular details regarding this issue, we have performed the docking simulation with the S3C sequence from the hanatoxin-insensitive K+-channel, shaker, and analyzed the conformational changes resulting from such docking. Compared with other functional data from previous studies with respect to the proximity of the S3-S4 linker region, we suggested a significant movement of drk1 S3C, but not shaker S3C, in the direction presumably towards S4, which was comprehended as a possible factor interfering with S4 translocation during drk1 gating in the presence of toxin. In combination with the discussions for structural roles of the length of the S3-S4 linker, a possible molecular mechanism to illustrate the hanatoxin binding-modified gating is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmr.614 | DOI Listing |
FASEB J
January 2025
Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China.
Spaceflight-induced multi-organ dysfunction affects the health of astronauts and the safety of in-orbit flight. However, the effect of microgravity on the kidney and the underlying mechanisms are unknown. In the current study, we used a hindlimb unweighting (HU) animal model to simulate microgravity and employed histological analysis, ischemia-reperfusion experiments, renal ultrasonography, bioinformatics analysis, isometric force measurement, and other molecular experimental settings to evaluate the effects of microgravity on the kidneys and the underlying mechanisms involved in this transition.
View Article and Find Full Text PDFBiochem Soc Trans
January 2025
Departamento de Ciencias Médicas Básicas, Facultad de Ciencias de la Salud-sección Medicina, Universidad de La Laguna, Tenerife, ES-38071, Spain.
Large conductance voltage- and calcium-activated potassium channels (BK channels) are extensively found throughout the central nervous system and play a crucial role in various neuronal functions. These channels are activated by a combination of cell membrane depolarisation and an increase in intracellular calcium concentration, provided by calcium sources located close to BK. In 2001, Isaacson and Murphy first demonstrated the coupling of BK channels with N-methyl-D-aspartate receptors (NMDAR) in olfactory bulb neurons.
View Article and Find Full Text PDFCell Oncol (Dordr)
January 2025
Division of Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
Background: Gastric cancer (GC) ranks as the fourth leading cause of cancer-related deaths worldwide, with most patients diagnosed at advanced stages due to the absence of reliable early detection biomarkers.
Methods: RNA-sequencing was conducted to identify the differentially expressed genes between GC tissues and adjacent normal tissues. CCK8, EdU, colony formation, transwell, flow cytometry and xenograft assays were adopted to explore the biological function of ZBTB10 and betulinic acid (BA) in GC progression.
Genes Genomics
January 2025
Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
Background: Cervical cancer is the fourth most common cancer worldwide in females. This occurs primarily due to the infection of high-risk Human Papilloma Virus (HPV), although in advanced stages it requires support from host cellular factors. BRN3A is one such host cellular factors, whose expression remains high in cervical cancers and upregulates tumorigenic HPV gene expression.
View Article and Find Full Text PDFMol Divers
January 2025
Center of Bioinformatics, College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China.
Melanoma, a highly aggressive skin cancer, remains a significant cause of mortality despite advancements in therapeutic strategies. There is an urgent demand for developing vaccines that can elicit strong and comprehensive immune responses against this malignancy. Achieving this goal is crucial to enhance the efficacy of immunological defense mechanisms in combating this disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!