Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Gene therapy offers an unprecedented opportunity to treat diverse pathologies. Adeno-associated virus (AAV) is a promising gene delivery vector for cardiovascular disease. However, AAV transduces the liver after systemic administration, reducing its usefulness for therapies targeted at other sites. Because vascular endothelial cells (ECs) are in contact with the bloodstream and are heterogeneous between organs, they represent an ideal target for site-specific delivery of biological agents.
Methods And Results: We isolated human venous EC-targeting peptides by phage display and genetically incorporated them into AAV capsids after amino acid 587. Peptide-modified AAVs transduced venous (but not arterial) ECs in vitro, whereas hepatocyte transduction was significantly lower than with native AAV. Intravenous infusion of engineered AAVs into mice produced reduced vector accumulation in liver measured 1 hour and 28 days after injection and delayed blood clearance rates compared with native AAV. Peptide-modified AAVs produced enhanced uptake of virions in the vena cava with selective transgene expression. Retargeting was dose dependent, and coinfusion of either heparin or free competing peptides indicated that uptake was principally independent of native AAV tropism and mediated via the peptide.
Conclusions: AAV tropism can be genetically engineered by use of phage display-derived peptides to generate vectors that are selective for the vasculature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.CIR.0000109697.68832.5D | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!