There is controversy in the literature over whether nitric oxide (NO) released during the inflammatory process has a pro- or inhibitory effect on neutrophil migration. The aim of the present investigation was to clarify this situation. Treatment of rats with non-selective, NG-nitro-L-arginine (nitro), or selective inducible NO synthase (iNOS), aminoguanidine (amino) inhibitors enhanced neutrophil migration 6h after the administration of low, but not high, doses of carrageenan (Cg) or Escherichia coli endotoxin (LPS). The neutrophil migration induced by N-formyl-methionyl-leucyl-phenylalanine (fMLP) was also enhanced by nitro or amino treatments. The enhancement of Cg-induced neutrophil migration by NOS inhibitor treatments was reversed by co-treatment with L-arginine, suggesting an involvement of the L-arginine/NOS pathway in the process. The administration of Cg in iNOS deficient (iNOS(-/-)) mice also enhanced the neutrophil migration compared with wild type mice. This enhancement was markedly potentiated by treatment of iNOS(-/-) mice with nitro. Investigating the mechanisms by which NOS inhibitors enhanced the neutrophil migration, it was observed that they promoted an increase in Cg-induced rolling and adhesion of leukocytes to endothelium and blocked the apoptosis of emigrated neutrophils. Similar results were observed in iNOS(-/-) mice, in which these mechanisms were potentiated and reverted by nitro and L-arginine treatments, respectively. In conclusion, these results suggest that during inflammation, NO released by either constitutive NOS (cNOS) or iNOS down-modulates the neutrophil migration. This NO effect seems to be a consequence of decreased rolling and adhesion of the neutrophils on endothelium and also the induction of apoptosis in migrated neutrophils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.niox.2003.11.001 | DOI Listing |
Methods Cell Biol
January 2025
Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands; Oncode Institute, Utrecht, The Netherlands. Electronic address:
Neutrophils are pivotal in orchestrating tumor-induced systemic inflammation and are increasingly recognized for their critical involvement in both the initiation and progression of cancer. A fundamental facet of neutrophil biology is their migratory capacity, which enables them to extravasate and infiltrate tumors in other tissues, where they carry out essential effector functions. Unraveling the intricate mechanisms of neutrophil motility and migration is crucial for comprehending immune responses and inflammatory processes, shedding light on their substantial contribution to cancer progression.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of critical care medicine, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, 410013, Hunan, China.
Neutrophils, traditionally considered as non-specific components of the innate immune system, have garnered considerable research interest due to their dual roles in both promoting and inhibiting tumor progression. This paper seeks to clarify the specific mechanisms by which neutrophils play a bidirectional role in tumor immunity and the factors that influence these roles. By conducting a comprehensive analysis and synthesis of a vast array of relevant literature, it has become evident that neutrophils can influence tumor development and invasive migration through various mechanisms, thereby exerting their anti-tumor effects.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, USA.
Cellular senescence contributes to inflammation and organ dysfunction during aging. While this process is generally characterized by irreversible cell cycle arrest, its morphological features and functional impacts vary in different cells from various organs. In this study, we examined the expression of multiple senescent markers in the lungs of young and aged humans and mice, as well as in mouse lung endothelial cells cultured with a senescence inducer, suberoylanilide hydroxamic acid (SAHA), or doxorubicin (DOXO).
View Article and Find Full Text PDFVasc Biol
January 2025
J van Buul, Medical Biochemistry, Amsterdam UMC Locatie AMC, Amsterdam, 1105 AZ, Netherlands.
Objective: Donor liver preservation methods and solutions have evolved over the last years. Liver sinusoidal endothelial cell (LSEC) barrier function and integrity during preservation is crucial for outcomes of liver transplantation. Therefore, the present study aimed to determine optimal preservation of LSEC barrier function and integrity, using different preservation solutions.
View Article and Find Full Text PDFInt Forum Allergy Rhinol
January 2025
Division of Division of Rhinology & Skull Base Surgery Department of Otolaryngology, University of Florida, Gainesville, Florida, USA.
Rationale: Smoking has been shown to be associated with circulating deficiencies in 25(OH)D3 and reduced sinonasal tissue levels of the active form of vitamin D, 1,25(OH)2D3. Given vitamin D's ability to reduce inflammation, we sought to examine if intranasal (IN) delivery of calcitriol [clinical analog of 1,25(OH)2D3] could reduce inflammation and improve disease severity in a murine model of chronic cigarette smoke-induced sinonasal inflammation (CS-SI).
Methods: Mice were exposed to CS 5 h/day, 5 days/week for 9 months, and then began IN calcitriol three times per week for 4 weeks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!