Introduction of plasmids in Phycomyces blakesleeanus caused extensive changes in the exogenous DNA and in the resident genome. Plasmids with a bacterial gene for geneticin resistance under a Phycomyces promoter were either injected into immature sporangia or incubated with spheroplasts. An improved method produced about one viable spheroplast per cell. Colonies resistant to geneticin were rare and only about 0.1% of their spores grew in the presence of geneticin. The transformation frequency was very low, < or =1 transformed colony per million spheroplasts or per microg DNA. Few nuclei in the transformants contained exogenous DNA, as shown by a selective procedure that sampled single nuclei from heterokaryons. The exogenous DNA was not integrated into the genome and no stable transformants were obtained. The plasmids were replicated in the recipient cells, but their DNA sequences were modified by deletions and rearrangements and the transformed phenotype was eventually lost. The spores developed in injected sporangia were often inviable; a genetic test showed that spore death was caused by impaired nuclear proliferation and induction of lethal mutations. About one-fourth of the viable spores from injected sporangia formed abnormal colonies with obvious changes in shape, texture, or color. The abnormalities that could be investigated were due to dominant mutations. The results indicate that incoming DNA is not only attacked, but signals a situation of stress that leads to increased mutation and nuclear and cellular death.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fgb.2003.09.007 | DOI Listing |
DNA is subject to continual damage, leaving each cell with thousands of individual DNA lesions at any given moment. The efficiency of DNA repair means that most known classes of lesion have a half-life of minutes to hours, but the extent to which DNA damage can persist for longer durations remains unknown. Here, using high-resolution phylogenetic trees from 89 donors, we identified mutations arising from 818 DNA lesions that persisted across multiple cell cycles in normal human stem cells from blood, liver and bronchial epithelium.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
Autophagy plays an important role in responding to necrotrophic pathogens and plant signal hormones. Brassinosteroids (BRs) are a class of natural steroidal phytohormones that effectively regulated the disease resistance responses in grape. However, the molecular mechanism of BR-autophagy networks responsible for activation of host defense against gray mold remained to be elucidated.
View Article and Find Full Text PDFCell Death Dis
January 2025
Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
Mitochondrial oxidative phosphorylation (OXPHOS) is a therapeutic vulnerability in glycolysis-deficient cancers. Here we show that inhibiting OXPHOS similarly suppresses the proliferation and tumorigenicity of glycolytically competent colorectal cancer (CRC) cells in vitro and in patient-derived CRC xenografts. While the increased glycolytic activity rapidly replenished the ATP pool, it did not restore the reduced production of aspartate upon OXPHOS inhibition.
View Article and Find Full Text PDFActa Dermatovenerol Croat
November 2024
Prof. Ana Bakija-Konsuo, MD, PhD, Clinic for Dermatovenerology CUTIS, Vukovarska 22, Dubrovnik, Croatia;
We report the case of an 18-month-old boy who developed a phototoxic skin reaction to terbinafine on his scalp, ears, and face in the form of disseminated erythematous plaques, which resembled subacute lupus erythematosus (SCLE) in their clinical presentation. Skin changes appeared a short time after the boy was exposed to sunlight during the period of time when he was treated with oral terbinafine due to Microsporum canis fungal scalp infection. Tinea capitis is a common dermatophyte infection primarily affecting prepubertal children (1).
View Article and Find Full Text PDFHeliyon
January 2025
School of Life Sciences, Department of Biochemistry, Molecular Oncology Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the generated reactive oxygen species (ROS, e.g. ·OH and O ) authoritatively enhances its biological and catalytic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!