Infection with different picornaviruses can cause meningitis/encephalitis in humans and experimental animals. To investigate the mechanisms of such inflammatory diseases, potential chemokine gene activation in human astrocytes was investigated following infection with Theiler's murine encephalomyelitis virus (TMEV), coxsackievirus B3 (CVB3), or coxsackievirus B4 (CVB4). We report that all these viruses are potent inducers for the expression of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) genes in primary human astrocytes, as well as in an established astrocyte cell line (U-373MG). Further studies indicated that both activator protein-1 (AP-1) and NF-kappaB transcription factors are required in the activation of chemokine genes in human astrocytes infected with various picornaviruses. Interestingly, the pattern of activated chemokine genes in human astrocytes is quite restricted compared to that in mouse astrocytes infected with the same viruses, suggesting species differences in gene activation. This may result in potential differences in the pathogenic outcome in each species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7165560 | PMC |
http://dx.doi.org/10.1002/glia.10331 | DOI Listing |
Front Cell Neurosci
January 2025
IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States.
Once believed to be the culprits of epileptogenic activity, the functional properties of balloon/giant cells (BC/GC), commonly found in some malformations of cortical development including focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC), are beginning to be unraveled. These abnormal cells emerge during early brain development as a result of a hyperactive mTOR pathway and may express both neuronal and glial markers. A paradigm shift occurred when our group demonstrated that BC/GC in pediatric cases of FCDIIb and TSC are unable to generate action potentials and lack synaptic inputs.
View Article and Find Full Text PDFCureus
December 2024
General Medicine, Dartford and Gravesham NHS Trust, Dartford, GBR.
Glioblastoma multiforme (GBM) is a World Health Organisation (WHO) grade IV glioma originating from astrocytes. It is the most common malignant primary tumour of the brain and central nervous system (CNS) and is associated with fast progression and violent local spread, with a median overall survival of approximately 15 months after diagnosis. Due to its late and varied presentation, it is often diagnosed only after it has grown considerably.
View Article and Find Full Text PDFCureus
January 2025
Electrophysiology, 3Brain AG, Genova, ITA.
The natural product MGN-3 (Biobran) is a defatted, partially hydrolysed rice bran-derived hemicellulose enzymatically modified with an extract of . It has a high proportion of arabinoxylan. It has a protective action against intracerebroventricular streptozotocin-induced murine sporadic Alzheimer's disease and reverses spatial memory deficit in this disease model.
View Article and Find Full Text PDFPurinergic Signal
January 2025
Department of Biology, Faculty of Science, University of British Columbia Okanagan Campus, Kelowna, BC, V1V 1V7, Canada.
The two main glial cell types of the central nervous system (CNS), astrocytes and microglia, are responsible for neuroimmune homeostasis. Recent evidence indicates astrocytes can participate in removal of pathological structures by becoming phagocytic under conditions of neurodegenerative disease when microglia, the professional phagocytes, are impaired. We hypothesized that adenosine triphosphate (ATP), which acts as damage-associated molecular pattern (DAMP), when released at high concentrations into extracellular space, upregulates phagocytic activity of human astrocytes.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
January 2025
Neurotraumatology and Subarachnoid Hemorrhage Research Unit, Area 8: Neurosciences and Mental Health, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain.
Chitinase 3-like protein 1 (CHI3L1) is emerging as a promising biomarker for assessing intracranial lesion burden and predicting prognosis in traumatic brain injury (TBI) patients. Following experimental TBI, Chi3l1 transcripts were detected in reactive astrocytes located within the pericontusional cortex. However, the cellular sources of CHI3L1 in response to hemorrhagic contusions in human brain remain unidentified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!