The two serum proteins of the complement cascade in the highest concentrations, C3 and C4, respond to various conditions in much the same manner as do other positive acute-phase proteins. A major difference is that they are relatively sluggish in response to cytokine drive, requiring several days rather than hours to be detectably elevated by serial measurements. As with other acute-phase proteins, there are many processes that up- or down-regulate synthesis, including infection or inflammation, hepatic failure, and immune-complex formation. Clinicians may find it difficult to distinguish among these processes, because they often occur simultaneously. The situation is further complicated by genetic polymorphism, with rare instances of markedly reduced synthesis and circulating levels, and consequent vulnerability to infection. C3 and C4 are measured for clinical purposes to help define certain rheumatic and immunologically mediated renal diseases. Interpreting the measured blood levels of these two components requires one to consider the intensity of the inflammatory drive, the timing of the suspected clinical process, the production of complement-consuming immune complexes, and the possible existence of benign circumstances. In this fifth article in a series, reference ranges for serum levels of two complement proteins (C3 and C4) are examined. The study is based on a cohort of over 55,000 Caucasian individuals from northern New England, who were tested in our laboratory in 1994-1999. Measurements were standardized against certified reference material (CRM) 470/reference preparation for proteins in human serum (RPPHS), and analyzed using a previously described statistical approach. Individuals with unequivocal laboratory evidence of inflammation (C-reactive protein of 10 mg/L or higher) were excluded. Our results show that the levels of C3 and C4 change little during life and between the sexes, except that they increase slightly and then fall after age 20 in males and at about age 45 in females. When values were expressed as multiples of the age- and gender-specific median levels, the resulting distributions fitted a log-Gaussian distribution well over a broad range. When patient data are normalized in this manner, the distribution parameters can be used to assign a centile corresponding to an individual's measurement, thus simplifying interpretation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6808034PMC
http://dx.doi.org/10.1002/jcla.10100DOI Listing

Publication Analysis

Top Keywords

complement proteins
8
acute-phase proteins
8
proteins
6
levels
5
reference distributions
4
distributions complement
4
proteins practical
4
practical simple
4
simple clinically
4
clinically relevant
4

Similar Publications

Background: In the brain as in other organs, complement contributes to immune defence and housekeeping to maintain homeostasis. Sources of complement may include local production by brain cells and influx from the periphery, the latter severely restricted by the blood brain barrier (BBB) in healthy brain. Dysregulation of complement leads to excessive inflammation, direct damage to self-cells and propagation of injury.

View Article and Find Full Text PDF

Optimizing Surface Maleimide/cRGD Ratios Enhances Targeting Efficiency of cRGD-Functionalized Nanomedicines.

J Am Chem Soc

January 2025

Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui Province, China.

Thiol-maleimide (MI) chemistry is a cornerstone of bioconjugation strategies, particularly in the development of drug delivery systems. The cyclic arginine-glycine-aspartic acid (cRGD) peptide, recognized for its ability to target the integrin αβ, is commonly employed to functionalize maleimide-bearing nanoparticles (NPs) for fabricating cRGD-functionalized nanomedicines. However, the impact of cRGD density on tumor targeting efficiency remains poorly understood.

View Article and Find Full Text PDF

Dinucleases of the DEDD superfamily, such as oligoribonuclease, Rexo2 and nanoRNase C, catalyze the essential final step of RNA degradation, the conversion of di- to mononucleotides. The active sites of these enzymes are optimized for substrates that are two nucleotides long, and do not discriminate between RNA and DNA. Here, we identified a novel DEDD subfamily, members of which function as dedicated deoxydinucleases (diDNases) that specifically hydrolyze single-stranded DNA dinucleotides in a sequence-independent manner.

View Article and Find Full Text PDF

The C3/C3aR pathway exacerbates acetaminophen-induced mouse liver injury via upregulating podoplanin on the macrophage.

FASEB J

January 2025

Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, The First Affiliated Hospital of Soochow University, Suzhou, China.

Acute liver failure (ALF) is a life-threatening condition that occurs when the liver sustains severe damage and rapidly loses its function. The primary cause of ALF is the overdose of acetaminophen (APAP), and its treatment is relatively limited. The involvement of the complement system in the development of ALF has been implicated.

View Article and Find Full Text PDF

Circadian Proteomics Reassesses the Temporal Regulation of Metabolic Rhythms by Chlamydomonas Clock.

Plant Cell Environ

January 2025

Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India.

Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!